Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from itertools import product | |
from typing import Optional, Tuple | |
import cv2 | |
import numpy as np | |
from mmpose.registry import KEYPOINT_CODECS | |
from .base import BaseKeypointCodec | |
from .utils import gaussian_blur, get_heatmap_maximum | |
class MegviiHeatmap(BaseKeypointCodec): | |
"""Represent keypoints as heatmaps via "Megvii" approach. See `MSPN`_ | |
(2019) and `CPN`_ (2018) for details. | |
Note: | |
- instance number: N | |
- keypoint number: K | |
- keypoint dimension: D | |
- image size: [w, h] | |
- heatmap size: [W, H] | |
Encoded: | |
- heatmaps (np.ndarray): The generated heatmap in shape (K, H, W) | |
where [W, H] is the `heatmap_size` | |
- keypoint_weights (np.ndarray): The target weights in shape (N, K) | |
Args: | |
input_size (tuple): Image size in [w, h] | |
heatmap_size (tuple): Heatmap size in [W, H] | |
kernel_size (tuple): The kernel size of the heatmap gaussian in | |
[ks_x, ks_y] | |
.. _`MSPN`: https://arxiv.org/abs/1901.00148 | |
.. _`CPN`: https://arxiv.org/abs/1711.07319 | |
""" | |
def __init__( | |
self, | |
input_size: Tuple[int, int], | |
heatmap_size: Tuple[int, int], | |
kernel_size: int, | |
) -> None: | |
super().__init__() | |
self.input_size = input_size | |
self.heatmap_size = heatmap_size | |
self.kernel_size = kernel_size | |
self.scale_factor = (np.array(input_size) / | |
heatmap_size).astype(np.float32) | |
def encode(self, | |
keypoints: np.ndarray, | |
keypoints_visible: Optional[np.ndarray] = None) -> dict: | |
"""Encode keypoints into heatmaps. Note that the original keypoint | |
coordinates should be in the input image space. | |
Args: | |
keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D) | |
keypoints_visible (np.ndarray): Keypoint visibilities in shape | |
(N, K) | |
Returns: | |
dict: | |
- heatmaps (np.ndarray): The generated heatmap in shape | |
(K, H, W) where [W, H] is the `heatmap_size` | |
- keypoint_weights (np.ndarray): The target weights in shape | |
(N, K) | |
""" | |
N, K, _ = keypoints.shape | |
W, H = self.heatmap_size | |
assert N == 1, ( | |
f'{self.__class__.__name__} only support single-instance ' | |
'keypoint encoding') | |
heatmaps = np.zeros((K, H, W), dtype=np.float32) | |
keypoint_weights = keypoints_visible.copy() | |
for n, k in product(range(N), range(K)): | |
# skip unlabled keypoints | |
if keypoints_visible[n, k] < 0.5: | |
continue | |
# get center coordinates | |
kx, ky = (keypoints[n, k] / self.scale_factor).astype(np.int64) | |
if kx < 0 or kx >= W or ky < 0 or ky >= H: | |
keypoint_weights[n, k] = 0 | |
continue | |
heatmaps[k, ky, kx] = 1. | |
kernel_size = (self.kernel_size, self.kernel_size) | |
heatmaps[k] = cv2.GaussianBlur(heatmaps[k], kernel_size, 0) | |
# normalize the heatmap | |
heatmaps[k] = heatmaps[k] / heatmaps[k, ky, kx] * 255. | |
encoded = dict(heatmaps=heatmaps, keypoint_weights=keypoint_weights) | |
return encoded | |
def decode(self, encoded: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: | |
"""Decode keypoint coordinates from heatmaps. The decoded keypoint | |
coordinates are in the input image space. | |
Args: | |
encoded (np.ndarray): Heatmaps in shape (K, H, W) | |
Returns: | |
tuple: | |
- keypoints (np.ndarray): Decoded keypoint coordinates in shape | |
(K, D) | |
- scores (np.ndarray): The keypoint scores in shape (K,). It | |
usually represents the confidence of the keypoint prediction | |
""" | |
heatmaps = gaussian_blur(encoded.copy(), self.kernel_size) | |
K, H, W = heatmaps.shape | |
keypoints, scores = get_heatmap_maximum(heatmaps) | |
for k in range(K): | |
heatmap = heatmaps[k] | |
px = int(keypoints[k, 0]) | |
py = int(keypoints[k, 1]) | |
if 1 < px < W - 1 and 1 < py < H - 1: | |
diff = np.array([ | |
heatmap[py][px + 1] - heatmap[py][px - 1], | |
heatmap[py + 1][px] - heatmap[py - 1][px] | |
]) | |
keypoints[k] += (np.sign(diff) * 0.25 + 0.5) | |
scores = scores / 255.0 + 0.5 | |
# Unsqueeze the instance dimension for single-instance results | |
# and restore the keypoint scales | |
keypoints = keypoints[None] * self.scale_factor | |
scores = scores[None] | |
return keypoints, scores | |