Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Optional, Tuple | |
import numpy as np | |
from mmpose.registry import KEYPOINT_CODECS | |
from .base import BaseKeypointCodec | |
from .msra_heatmap import MSRAHeatmap | |
from .regression_label import RegressionLabel | |
class IntegralRegressionLabel(BaseKeypointCodec): | |
"""Generate keypoint coordinates and normalized heatmaps. See the paper: | |
`DSNT`_ by Nibali et al(2018). | |
Note: | |
- instance number: N | |
- keypoint number: K | |
- keypoint dimension: D | |
- image size: [w, h] | |
Encoded: | |
- keypoint_labels (np.ndarray): The normalized regression labels in | |
shape (N, K, D) where D is 2 for 2d coordinates | |
- heatmaps (np.ndarray): The generated heatmap in shape (K, H, W) where | |
[W, H] is the `heatmap_size` | |
- keypoint_weights (np.ndarray): The target weights in shape (N, K) | |
Args: | |
input_size (tuple): Input image size in [w, h] | |
heatmap_size (tuple): Heatmap size in [W, H] | |
sigma (float): The sigma value of the Gaussian heatmap | |
unbiased (bool): Whether use unbiased method (DarkPose) in ``'msra'`` | |
encoding. See `Dark Pose`_ for details. Defaults to ``False`` | |
blur_kernel_size (int): The Gaussian blur kernel size of the heatmap | |
modulation in DarkPose. The kernel size and sigma should follow | |
the expirical formula :math:`sigma = 0.3*((ks-1)*0.5-1)+0.8`. | |
Defaults to 11 | |
normalize (bool): Whether to normalize the heatmaps. Defaults to True. | |
.. _`DSNT`: https://arxiv.org/abs/1801.07372 | |
""" | |
def __init__(self, | |
input_size: Tuple[int, int], | |
heatmap_size: Tuple[int, int], | |
sigma: float, | |
unbiased: bool = False, | |
blur_kernel_size: int = 11, | |
normalize: bool = True) -> None: | |
super().__init__() | |
self.heatmap_codec = MSRAHeatmap(input_size, heatmap_size, sigma, | |
unbiased, blur_kernel_size) | |
self.keypoint_codec = RegressionLabel(input_size) | |
self.normalize = normalize | |
def encode(self, | |
keypoints: np.ndarray, | |
keypoints_visible: Optional[np.ndarray] = None) -> dict: | |
"""Encoding keypoints to regression labels and heatmaps. | |
Args: | |
keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D) | |
keypoints_visible (np.ndarray): Keypoint visibilities in shape | |
(N, K) | |
Returns: | |
dict: | |
- keypoint_labels (np.ndarray): The normalized regression labels in | |
shape (N, K, D) where D is 2 for 2d coordinates | |
- heatmaps (np.ndarray): The generated heatmap in shape | |
(K, H, W) where [W, H] is the `heatmap_size` | |
- keypoint_weights (np.ndarray): The target weights in shape | |
(N, K) | |
""" | |
encoded_hm = self.heatmap_codec.encode(keypoints, keypoints_visible) | |
encoded_kp = self.keypoint_codec.encode(keypoints, keypoints_visible) | |
heatmaps = encoded_hm['heatmaps'] | |
keypoint_labels = encoded_kp['keypoint_labels'] | |
keypoint_weights = encoded_kp['keypoint_weights'] | |
if self.normalize: | |
val_sum = heatmaps.sum(axis=(-1, -2)).reshape(-1, 1, 1) + 1e-24 | |
heatmaps = heatmaps / val_sum | |
encoded = dict( | |
keypoint_labels=keypoint_labels, | |
heatmaps=heatmaps, | |
keypoint_weights=keypoint_weights) | |
return encoded | |
def decode(self, encoded: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: | |
"""Decode keypoint coordinates from normalized space to input image | |
space. | |
Args: | |
encoded (np.ndarray): Coordinates in shape (N, K, D) | |
Returns: | |
tuple: | |
- keypoints (np.ndarray): Decoded coordinates in shape (N, K, D) | |
- socres (np.ndarray): The keypoint scores in shape (N, K). | |
It usually represents the confidence of the keypoint prediction | |
""" | |
keypoints, scores = self.keypoint_codec.decode(encoded) | |
return keypoints, scores | |