Spaces:
Runtime error
Runtime error
File size: 8,826 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
from functools import partial
from typing import Optional, Sequence, Union
import torch
import torch.nn as nn
from mmengine.model import BaseModule
from mmengine.utils import digit_version
from ..utils import to_2tuple
# After pytorch v1.10.0, use torch.meshgrid without indexing
# will raise extra warning. For more details,
# refers to https://github.com/pytorch/pytorch/issues/50276
if digit_version(torch.__version__) >= digit_version('1.10.0'):
torch_meshgrid = partial(torch.meshgrid, indexing='ij')
else:
torch_meshgrid = torch.meshgrid
class ConditionalPositionEncoding(BaseModule):
"""The Conditional Position Encoding (CPE) module.
The CPE is the implementation of 'Conditional Positional Encodings
for Vision Transformers <https://arxiv.org/abs/2102.10882>'_.
Args:
in_channels (int): Number of input channels.
embed_dims (int): The feature dimension. Default: 768.
stride (int): Stride of conv layer. Default: 1.
"""
def __init__(self, in_channels, embed_dims=768, stride=1, init_cfg=None):
super(ConditionalPositionEncoding, self).__init__(init_cfg=init_cfg)
self.proj = nn.Conv2d(
in_channels,
embed_dims,
kernel_size=3,
stride=stride,
padding=1,
bias=True,
groups=embed_dims)
self.stride = stride
def forward(self, x, hw_shape):
B, N, C = x.shape
H, W = hw_shape
feat_token = x
# convert (B, N, C) to (B, C, H, W)
cnn_feat = feat_token.transpose(1, 2).view(B, C, H, W).contiguous()
if self.stride == 1:
x = self.proj(cnn_feat) + cnn_feat
else:
x = self.proj(cnn_feat)
x = x.flatten(2).transpose(1, 2)
return x
class PositionEncodingFourier(BaseModule):
"""The Position Encoding Fourier (PEF) module.
The PEF is adopted from EdgeNeXt <https://arxiv.org/abs/2206.10589>'_.
Args:
in_channels (int): Number of input channels.
Default: 32
embed_dims (int): The feature dimension.
Default: 768.
temperature (int): Temperature.
Default: 10000.
dtype (torch.dtype): The data type.
Default: torch.float32.
init_cfg (dict): The config dict for initializing the module.
Default: None.
"""
def __init__(self,
in_channels=32,
embed_dims=768,
temperature=10000,
dtype=torch.float32,
init_cfg=None):
super(PositionEncodingFourier, self).__init__(init_cfg=init_cfg)
self.proj = nn.Conv2d(in_channels * 2, embed_dims, kernel_size=1)
self.scale = 2 * math.pi
self.in_channels = in_channels
self.embed_dims = embed_dims
self.dtype = dtype
if digit_version(torch.__version__) < digit_version('1.8.0'):
floor_div = torch.floor_divide
else:
floor_div = partial(torch.div, rounding_mode='floor')
dim_t = torch.arange(in_channels, dtype=self.dtype)
self.dim_t = temperature**(2 * floor_div(dim_t, 2) / in_channels)
def forward(self, bhw_shape):
B, H, W = bhw_shape
mask = torch.zeros(B, H, W).bool().to(self.proj.weight.device)
not_mask = ~mask
eps = 1e-6
y_embed = not_mask.cumsum(1, dtype=self.dtype)
x_embed = not_mask.cumsum(2, dtype=self.dtype)
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = self.dim_t.to(mask.device)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack(
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()),
dim=4).flatten(3)
pos_y = torch.stack(
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()),
dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
pos = self.proj(pos)
return pos
def build_2d_sincos_position_embedding(
patches_resolution: Union[int, Sequence[int]],
embed_dims: int,
temperature: Optional[int] = 10000.,
cls_token: Optional[bool] = False) -> torch.Tensor:
"""The function is to build position embedding for model to obtain the
position information of the image patches.
Args:
patches_resolution (Union[int, Sequence[int]]): The resolution of each
patch.
embed_dims (int): The dimension of the embedding vector.
temperature (int, optional): The temperature parameter. Defaults to
10000.
cls_token (bool, optional): Whether to concatenate class token.
Defaults to False.
Returns:
torch.Tensor: The position embedding vector.
"""
if isinstance(patches_resolution, int):
patches_resolution = (patches_resolution, patches_resolution)
h, w = patches_resolution
grid_w = torch.arange(w, dtype=torch.float32)
grid_h = torch.arange(h, dtype=torch.float32)
grid_w, grid_h = torch_meshgrid(grid_w, grid_h)
assert embed_dims % 4 == 0, \
'Embed dimension must be divisible by 4.'
pos_dim = embed_dims // 4
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
omega = 1. / (temperature**omega)
out_w = torch.einsum('m,d->md', [grid_w.flatten(), omega])
out_h = torch.einsum('m,d->md', [grid_h.flatten(), omega])
pos_emb = torch.cat(
[
torch.sin(out_w),
torch.cos(out_w),
torch.sin(out_h),
torch.cos(out_h)
],
dim=1,
)[None, :, :]
if cls_token:
cls_token_pe = torch.zeros([1, 1, embed_dims], dtype=torch.float32)
pos_emb = torch.cat([cls_token_pe, pos_emb], dim=1)
return pos_emb
class RotaryEmbeddingFast(BaseModule):
"""Implements 2D rotary embedding (RoPE) for image tokens. Position
encoding is implemented with sin and cos functions,
.. math::
Pos_{cos} = cos(\frac{t}{\theta^{\frac{2i}{d}}} \\
Pos_{sin} = sin(\frac{t}{\theta^{\frac{2i}{d}}}
Args:
embed_dims (int): The feature dimension for each head.
patch_resolution (int | tuple): The resolution of the
image, in format (H, W).
theta (float): The hyperparameter for position coding.
Defaults to 10000.
init_cfg (dict, optional): Initialization config dict.
Defaults to None.
"""
def __init__(self,
embed_dims,
patch_resolution,
theta=10000.,
init_cfg=None):
super(RotaryEmbeddingFast, self).__init__(init_cfg=init_cfg)
self.half_dim = embed_dims // 2
self.patch_resolution = to_2tuple(patch_resolution)
self.theta = theta
freqs_cos, freqs_sin = self.compute_position_embedding()
self.register_buffer('freqs_cos', freqs_cos)
self.register_buffer('freqs_sin', freqs_sin)
def compute_position_embedding(self):
frequency = self.theta**(
torch.arange(0, self.half_dim, 2).float() / self.half_dim)
frequency = 1. / frequency
h, w = self.patch_resolution
th = torch.arange(h) / h * self.half_dim
tw = torch.arange(w) / w * self.half_dim
position_h = (th[:, None] @ frequency[None, :]).repeat(1, 2)
position_w = (tw[:, None] @ frequency[None, :]).repeat(1, 2)
height = position_h[:, None, :].expand(h, w, self.half_dim)
width = position_w[None, :, :].expand(h, w, self.half_dim)
position = torch.cat((height, width), dim=-1)
freqs_cos = position.cos().view(-1, position.shape[-1])
freqs_sin = position.sin().view(-1, position.shape[-1])
return freqs_cos, freqs_sin
def forward(self, x, patch_resolution):
# Check whether the patch resolution is the predefined size
patch_resolution = to_2tuple(patch_resolution)
if patch_resolution != self.patch_resolution:
self.patch_resolution = patch_resolution
freqs_cos, freqs_sin = self.compute_position_embedding()
self.register_buffer('freqs_cos', freqs_cos.to(x.device))
self.register_buffer('freqs_sin', freqs_sin.to(x.device))
batch, num_heads, num_patches, dim = x.shape
inputs = x
x = x.reshape(batch, num_heads, num_patches, -1, 2)
x1, x2 = x.unbind(dim=-1)
x = torch.stack((-x2, x1), dim=-1)
x = x.reshape(batch, num_heads, num_patches, dim)
return inputs * self.freqs_cos + x * self.freqs_sin
|