File size: 1,334 Bytes
cc0dd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List

import torch

from mmpretrain.registry import MODELS
from mmpretrain.structures import DataSample
from .base import BaseSelfSupervisor


@MODELS.register_module()
class SimSiam(BaseSelfSupervisor):
    """SimSiam.

    Implementation of `Exploring Simple Siamese Representation Learning
    <https://arxiv.org/abs/2011.10566>`_. The operation of fixing learning rate
    of predictor is in `engine/hooks/simsiam_hook.py`.
    """

    def loss(self, inputs: List[torch.Tensor], data_samples: List[DataSample],
             **kwargs) -> Dict[str, torch.Tensor]:
        """The forward function in training.

        Args:
            inputs (List[torch.Tensor]): The input images.
            data_samples (List[DataSample]): All elements required
                during the forward function.

        Returns:
            Dict[str, torch.Tensor]: A dictionary of loss components.
        """
        assert isinstance(inputs, list)
        img_v1 = inputs[0]
        img_v2 = inputs[1]

        z1 = self.neck(self.backbone(img_v1))[0]  # NxC
        z2 = self.neck(self.backbone(img_v2))[0]  # NxC

        loss_1 = self.head.loss(z1, z2)
        loss_2 = self.head.loss(z2, z1)

        losses = dict(loss=0.5 * (loss_1 + loss_2))
        return losses