Spaces:
Runtime error
Runtime error
File size: 13,309 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn as nn
from mmengine.model.weight_init import trunc_normal_
from mmpretrain.models.backbones.hivit import BlockWithRPE, HiViT, PatchMerge
from mmpretrain.registry import MODELS
from mmpretrain.structures import DataSample
from ..utils import build_2d_sincos_position_embedding
from .base import BaseSelfSupervisor
@MODELS.register_module()
class iTPNHiViT(HiViT):
"""HiViT for iTPN pre-training.
Args:
img_size (int | tuple): Input image size. Defaults to 224.
patch_size (int | tuple): The patch size. Defaults to 16.
inner_patches (int): Inner patch. Defaults to 4.
stem_mlp_ratio (int): Ratio of MLP hidden dim to embedding dim
in the first two stages. Defaults to 3.
mlp_ratio (int): Ratio of MLP hidden dim to embedding dim in
the last stage. Defaults to 4.
qkv_bias (bool): Enable bias for qkv projections if True.
qk_scale (float): The number of divider after q@k. Default to None.
drop_rate (float): Probability of an element to be zeroed.
Defaults to 0.
attn_drop_rate (float): The drop out rate for attention output weights.
Defaults to 0.
drop_path_rate (float): stochastic depth rate. Defaults to 0.
norm_cfg (dict): Config dict for normalization layer.
Defaults to ``dict(type='LN')``.
ape (bool): If True, add absolute position embedding to
the patch embedding.
rpe (bool): If True, add relative position embedding to
the patch embedding.
layer_scale_init_value (float): Layer-scale init values. Defaults to 0.
mask_ratio (bool): The ratio of total number of patches to be masked.
Defaults to 0.75.
reconstruction_type (str): The reconstruction of self-supervised
learning. Defaults to 'pixel'.
"""
def __init__(
self,
arch='base',
img_size: int = 224,
patch_size: int = 16,
inner_patches: int = 4,
stem_mlp_ratio: int = 3.,
mlp_ratio: int = 4.,
qkv_bias: bool = True,
qk_scale: Optional[bool] = None,
drop_rate: float = 0.0,
attn_drop_rate: float = 0.0,
drop_path_rate: float = 0.0,
norm_cfg: dict = dict(type='LN', eps=1e-6),
ape: bool = True,
rpe: bool = False,
layer_scale_init_value: float = 0.0,
mask_ratio: float = 0.75,
reconstruction_type: str = 'pixel',
):
super().__init__(
arch=arch,
img_size=img_size,
patch_size=patch_size,
inner_patches=inner_patches,
stem_mlp_ratio=stem_mlp_ratio,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
norm_cfg=norm_cfg,
ape=ape,
rpe=rpe,
layer_scale_init_value=layer_scale_init_value)
self.pos_embed.requires_grad = False
self.mask_ratio = mask_ratio
assert reconstruction_type in ['pixel', 'clip'], \
'iTPN method only support `pixel` and `clip`, ' \
f'but got `{reconstruction_type}`.'
self.reconstruction_type = reconstruction_type
self.num_patches = self.patch_embed.num_patches
if reconstruction_type == 'clip':
self.mask_token = nn.Parameter(torch.zeros(1, 1, self.embed_dims))
def init_weights(self) -> None:
"""Initialize position embedding, patch embedding and cls token."""
super().apply(self._init_weights)
if self.reconstruction_type == 'clip':
trunc_normal_(self.mask_token, std=0.02)
self.rescale_init_weight()
else:
pos_embed = build_2d_sincos_position_embedding(
int(self.num_patches**.5),
self.pos_embed.shape[-1],
cls_token=False)
self.pos_embed.data.copy_(pos_embed.float())
w = self.patch_embed.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
def rescale_init_weight(self) -> None:
"""Rescale the initialized weights."""
def rescale(param, layer_id):
param.div_(math.sqrt(2.0 * layer_id))
for layer_id, layer in enumerate(self.blocks):
if isinstance(layer, BlockWithRPE):
if layer.attn is not None:
rescale(layer.attn.proj.weight.data, layer_id + 1)
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
def masking_id(self, batch_size, mask_ratio):
N, L = batch_size, self.pos_embed.size(1)
len_keep = int(L * (1 - mask_ratio))
noise = torch.rand(
N, L, device=self.pos_embed.device) # noise in [0, 1]
# sort noise for each sample
ids_shuffle = torch.argsort(
noise, dim=1) # ascend: small is keep, large is remove
ids_restore = torch.argsort(ids_shuffle, dim=1)
# keep the first subset
ids_keep = ids_shuffle[:, :len_keep]
# generate the binary mask: 0 is keep, 1 is remove
mask = torch.ones([N, L], device=self.pos_embed.device)
mask[:, :ids_keep.size(1)] = 0
# unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
return ids_keep, ids_restore, mask
def forward_pixel(
self,
x: torch.Tensor,
mask: Optional[bool] = True
) -> Tuple[Tuple, torch.Tensor, torch.Tensor]:
"""Generate features for masked images.
The function supports two kind of forward behaviors. If the ``mask`` is
``True``, the function will generate mask to masking some patches
randomly and get the hidden features for visible patches, which means
the function will be executed as masked imagemodeling pre-training;
if the ``mask`` is ``None`` or ``False``, the forward function will
call ``super().forward()``, which extract features from images without
mask.
Args:
x (torch.Tensor): Input images, which is of shape B x C x H x W.
mask (bool, optional): To indicate whether the forward function
generating ``mask`` or not.
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Hidden features,
mask and the ids to restore original image.
- ``x`` (torch.Tensor): hidden features, which is of shape
B x (L * mask_ratio) x C.
- ``mask`` (torch.Tensor): mask used to mask image.
- ``ids_restore`` (torch.Tensor): ids to restore original image.
"""
if mask is None or False:
return super().forward(x)
else:
B, C, H, W = x.shape
ids_keep, ids_restore, mask = self.masking_id(B, self.mask_ratio)
x = self.patch_embed(x)
x = torch.gather(
x,
dim=1,
index=ids_keep[:, :, None, None,
None].expand(-1, -1, *x.shape[2:]))
outs = []
for blk in self.blocks[:-self.num_main_blocks]:
if isinstance(blk, PatchMerge):
outs.append(x)
x = blk(x)
x = x[..., 0, 0, :]
if self.ape:
pos_embed = self.interpolate_pos_encoding(x, H, W)
pos_embed = torch.gather(
pos_embed.expand(B, -1, -1),
dim=1,
index=ids_keep[:, :, None].expand(-1, -1,
pos_embed.shape[2]),
)
x = x + pos_embed
x = self.pos_drop(x)
for blk in self.blocks[-self.num_main_blocks:]:
x = blk(x)
outs.append(x)
return (tuple(outs), mask, ids_restore)
def forward_clip(self,
x: torch.Tensor,
mask: Optional[bool] = True) -> Tuple:
"""Generate features for masked images.
The function supports two kind of forward behaviors. If the ``mask`` is
``True``, the function will generate mask to masking some patches
randomly and get the hidden features for visible patches, which means
the function will be executed as masked imagemodeling pre-training;
if the ``mask`` is ``None`` or ``False``, the forward function will
call ``super().forward()``, which extract features from images without
mask.
Args:
x (torch.Tensor): Input images, which is of shape B x C x H x W.
mask (bool, optional): To indicate whether the forward function
generating ``mask`` or not.
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Hidden features,
mask and the ids to restore original image.
- ``x`` (torch.Tensor): hidden features, which is of shape
B x (L * mask_ratio) x C.
- ``mask`` (torch.Tensor): mask used to mask image.
- ``ids_restore`` (torch.Tensor): ids to restore original image.
"""
if mask is None or False:
return super().forward(x)
else:
B, C, H, W = x.shape
x = self.patch_embed(x)
outs = []
for blk in self.blocks[:-self.num_main_blocks]:
if isinstance(blk, PatchMerge):
outs.append(x)
x = blk(x)
x = x[..., 0, 0, :]
B, L, _ = x.shape
mask_token = self.mask_token.expand(B, L, -1)
w = mask.flatten(1).unsqueeze(-1).type_as(mask_token)
x = x * (1. - w) + mask_token * w
if self.ape:
pos_embed = self.interpolate_pos_encoding(x, H, W)
x = x + pos_embed
x = self.pos_drop(x)
rpe_index = True if self.rpe else None
for blk in self.blocks[-self.num_main_blocks:]:
x = blk(x, rpe_index)
outs.append(x)
return tuple(outs)
def forward(self, x: torch.Tensor, mask: Optional[bool] = True) -> Tuple:
"""Generate features for masked images.
The function supports two kind of forward behaviors. If the ``mask`` is
``True``, the function will generate mask to masking some patches
randomly and get the hidden features for visible patches, which means
the function will be executed as masked imagemodeling pre-training;
if the ``mask`` is ``None`` or ``False``, the forward function will
call ``super().forward()``, which extract features from images without
mask.
Args:
x (torch.Tensor): Input images, which is of shape B x C x H x W.
mask (bool, optional): To indicate whether the forward function
generating ``mask`` or not.
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Hidden features,
mask and the ids to restore original image.
- ``x`` (torch.Tensor): hidden features, which is of shape
B x (L * mask_ratio) x C.
- ``mask`` (torch.Tensor): mask used to mask image.
- ``ids_restore`` (torch.Tensor): ids to restore original image.
"""
if self.reconstruction_type == 'pixel':
return self.forward_pixel(x, mask)
return self.forward_clip(x, mask)
@MODELS.register_module()
class iTPN(BaseSelfSupervisor):
"""iTPN.
Implementation of `iTPN: Integrally Pre-Trained Transformer Pyramid
Networks <https://arxiv.org/abs/2211.12735>`_.
"""
def extract_feat(self, inputs: torch.Tensor):
return self.backbone(inputs, mask=None)
def loss(self, inputs: torch.Tensor, data_samples: List[DataSample],
**kwargs) -> Dict[str, torch.Tensor]:
"""The forward function in training.
Args:
inputs (torch.Tensor): The input images.
data_samples (List[DataSample]): All elements required
during the forward function.
Returns:
Dict[str, torch.Tensor]: A dictionary of loss components.
"""
if self.backbone.reconstruction_type == 'pixel':
latent, mask, ids_restore = self.backbone(inputs)
pred = self.neck(latent, ids_restore)
loss = self.head.loss(pred, inputs, mask)
else:
mask = torch.stack(
[data_sample.mask for data_sample in data_samples])
img_latent = self.backbone(inputs[0], mask)
# inputs[1] is the target image
with torch.no_grad():
target = self.target_generator(inputs[1])[0]
target = target.detach()
# iTPN contains a neck module
feats = self.neck(img_latent)
loss = self.head.loss(feats, target[:, 1:, :], mask)
losses = dict(loss=loss)
return losses
|