Spaces:
Runtime error
Runtime error
File size: 24,628 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
import torch
import torch.nn as nn
from mmcv.cnn.bricks import DropPath
from mmengine.model.weight_init import trunc_normal_
from mmpretrain.registry import MODELS
from ..utils import build_norm_layer, to_2tuple
from .base_backbone import BaseBackbone
class Mlp(nn.Module):
"""MLP block.
Args:
in_features (int): Number of input dims.
hidden_features (int): Number of hidden dims.
out_feature (int): Number of out dims.
act_layer: MLP activation layer.
drop (float): MLP dropout rate.
"""
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
"""Attention.
Args:
input size (int): Input size.
dim (int): Number of input dims.
num_heads (int): Number of attention heads.
qkv_bias (bool): Enable bias for qkv projections if True.
qk_scale (float): The number of divider after q@k. Default to None.
attn_drop (float): The drop out rate for attention output weights.
Defaults to 0.
proj_drop (float): Probability of an element to be zeroed
after the feed forward layer. Defaults to 0.
rpe (bool): If True, add relative position embedding to
the patch embedding.
"""
def __init__(self,
input_size,
dim,
num_heads,
qkv_bias=True,
qk_scale=None,
attn_drop=0.,
proj_drop=0.,
rpe=True):
super().__init__()
self.input_size = input_size
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * input_size - 1) *
(2 * input_size - 1), num_heads)) if rpe else None
if rpe:
coords_h = torch.arange(input_size)
coords_w = torch.arange(input_size)
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
coords_flatten = torch.flatten(coords, 1)
relative_coords = coords_flatten[:, :,
None] - coords_flatten[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += input_size - 1
relative_coords[:, :, 1] += input_size - 1
relative_coords[:, :, 0] *= 2 * input_size - 1
relative_position_index = relative_coords.sum(-1)
self.register_buffer('relative_position_index',
relative_position_index)
trunc_normal_(self.relative_position_bias_table, std=.02)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, rpe_index=None, mask=None):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[
2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
if rpe_index is not None:
rpe_index = self.relative_position_index.view(-1)
S = int(math.sqrt(rpe_index.size(-1)))
relative_position_bias = self.relative_position_bias_table[
rpe_index].view(-1, S, S, self.num_heads)
relative_position_bias = relative_position_bias.permute(
0, 3, 1, 2).contiguous()
attn = attn + relative_position_bias
if mask is not None:
mask = mask.bool()
attn = attn.masked_fill(~mask[:, None, None, :], float('-inf'))
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class BlockWithRPE(nn.Module):
"""HiViT block.
Args:
input_size (int): Input size.
dim (int): Number of input dims.
num_heads (int): Number of attention heads.
mlp_ratio (int): Ratio of MLP hidden dim to embedding dim.
qkv_bias (bool): Enable bias for qkv projections if True.
qk_scale (float): The number of divider after q@k. Default to None.
drop (float): Probability of an element to be zeroed
after the feed forward layer. Defaults to 0.
attn_drop (float): The drop out rate for attention output weights.
Defaults to 0.
drop_path (float): Stochastic depth rate. Defaults to 0.
rpe (bool): If True, add relative position embedding to
the patch embedding.
layer_scale_init_value (float): Layer-scale init values. Defaults to 0.
act_layer: MLP activation layer.
norm_cfg (dict): Config dict for normalization layer.
Defaults to ``dict(type='LN')``.
"""
def __init__(self,
input_size,
dim,
num_heads=0.,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
rpe=True,
layer_scale_init_value=0.0,
act_layer=nn.GELU,
norm_cfg=dict(type='LN')):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.mlp_ratio = mlp_ratio
with_attn = num_heads > 0.
self.norm1 = build_norm_layer(norm_cfg, dim) if with_attn else None
self.attn = Attention(
input_size,
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
rpe=rpe,
) if with_attn else None
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = build_norm_layer(norm_cfg, dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
if layer_scale_init_value > 0:
self.gamma_1 = nn.Parameter(
layer_scale_init_value * torch.ones(
(dim)), requires_grad=True) if with_attn else None
self.gamma_2 = nn.Parameter(
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
else:
self.gamma_1, self.gamma_2 = None, None
def forward(self, x, rpe_index=None, mask=None):
if self.attn is not None:
if self.gamma_1 is not None:
x = x + self.drop_path(
self.gamma_1 * self.attn(self.norm1(x), rpe_index, mask))
else:
x = x + self.drop_path(
self.attn(self.norm1(x), rpe_index, mask))
if self.gamma_2 is not None:
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):
"""PatchEmbed for HiViT.
Args:
img_size (int): Input image size.
patch_size (int): Patch size. Defaults to 16.
inner_patches (int): Inner patch. Defaults to 4.
in_chans (int): Number of image input channels.
embed_dim (int): Transformer embedding dimension.
norm_cfg (dict): Config dict for normalization layer.
Defaults to ``dict(type='LN')``.
kernel_size (int): Kernel size.
pad_size (int): Pad size.
"""
def __init__(self,
img_size=224,
patch_size=16,
inner_patches=4,
in_chans=3,
embed_dim=128,
norm_cfg=None,
kernel_size=None,
pad_size=None):
super().__init__()
img_size = to_2tuple(img_size) if not isinstance(img_size,
tuple) else img_size
patch_size = to_2tuple(patch_size)
patches_resolution = [
img_size[0] // patch_size[0], img_size[1] // patch_size[1]
]
self.img_size = img_size
self.patch_size = patch_size
self.inner_patches = inner_patches
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
conv_size = [size // inner_patches for size in patch_size]
kernel_size = kernel_size or conv_size
pad_size = pad_size or 0
self.proj = nn.Conv2d(
in_chans,
embed_dim,
kernel_size=kernel_size,
stride=conv_size,
padding=pad_size)
if norm_cfg is not None:
self.norm = build_norm_layer(norm_cfg, embed_dim)
else:
self.norm = None
def forward(self, x):
B, C, H, W = x.shape
patches_resolution = (H // self.patch_size[0], W // self.patch_size[1])
num_patches = patches_resolution[0] * patches_resolution[1]
x = self.proj(x).view(
B,
-1,
patches_resolution[0],
self.inner_patches,
patches_resolution[1],
self.inner_patches,
).permute(0, 2, 4, 3, 5, 1).reshape(B, num_patches, self.inner_patches,
self.inner_patches, -1)
if self.norm is not None:
x = self.norm(x)
return x
class PatchMerge(nn.Module):
"""PatchMerge for HiViT.
Args:
dim (int): Number of input channels.
norm_cfg (dict): Config dict for normalization layer.
"""
def __init__(self, dim, norm_cfg):
super().__init__()
self.norm = build_norm_layer(norm_cfg, dim * 4)
self.reduction = nn.Linear(dim * 4, dim * 2, bias=False)
def forward(self, x, *args, **kwargs):
is_main_stage = len(x.shape) == 3
if is_main_stage:
B, N, C = x.shape
S = int(math.sqrt(N))
x = x.reshape(B, S // 2, 2, S // 2, 2, C) \
.permute(0, 1, 3, 2, 4, 5) \
.reshape(B, -1, 2, 2, C)
x0 = x[..., 0::2, 0::2, :]
x1 = x[..., 1::2, 0::2, :]
x2 = x[..., 0::2, 1::2, :]
x3 = x[..., 1::2, 1::2, :]
x = torch.cat([x0, x1, x2, x3], dim=-1)
x = self.norm(x)
x = self.reduction(x)
if is_main_stage:
x = x[:, :, 0, 0, :]
return x
@MODELS.register_module()
class HiViT(BaseBackbone):
"""HiViT.
A PyTorch implement of: `HiViT: A Simple and More Efficient Design
of Hierarchical Vision Transformer <https://arxiv.org/abs/2205.14949>`_.
Args:
arch (str | dict): Swin Transformer architecture. If use string, choose
from 'tiny', 'small', and'base'. If use dict, it should
have below keys:
- **embed_dims** (int): The dimensions of embedding.
- **depths** (List[int]): The number of blocks in each stage.
- **num_heads** (int): The number of heads in attention
modules of each stage.
Defaults to 'tiny'.
img_size (int): Input image size.
patch_size (int): Patch size. Defaults to 16.
inner_patches (int): Inner patch. Defaults to 4.
in_chans (int): Number of image input channels.
embed_dim (int): Transformer embedding dimension.
depths (list[int]): Number of successive HiViT blocks.
num_heads (int): Number of attention heads.
stem_mlp_ratio (int): Ratio of MLP hidden dim to embedding dim
in the first two stages.
mlp_ratio (int): Ratio of MLP hidden dim to embedding dim in
the last stage.
qkv_bias (bool): Enable bias for qkv projections if True.
qk_scale (float): The number of divider after q@k. Default to None.
drop_rate (float): Probability of an element to be zeroed
after the feed forward layer. Defaults to 0.
attn_drop_rate (float): The drop out rate for attention output weights.
Defaults to 0.
drop_path_rate (float): Stochastic depth rate. Defaults to 0.
norm_cfg (dict): Config dict for normalization layer.
Defaults to ``dict(type='LN')``.
ape (bool): If True, add absolute position embedding to
the patch embedding.
rpe (bool): If True, add relative position embedding to
the patch embedding.
patch_norm (bool): If True, use norm_cfg for normalization layer.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters. Defaults to -1.
kernel_size (int): Kernel size.
pad_size (int): Pad size.
layer_scale_init_value (float): Layer-scale init values. Defaults to 0.
init_cfg (dict, optional): The extra config for initialization.
Defaults to None.
"""
arch_zoo = {
**dict.fromkeys(['t', 'tiny'],
{'embed_dims': 384,
'depths': [1, 1, 10],
'num_heads': 6}),
**dict.fromkeys(['s', 'small'],
{'embed_dims': 384,
'depths': [2, 2, 20],
'num_heads': 6}),
**dict.fromkeys(['b', 'base'],
{'embed_dims': 512,
'depths': [2, 2, 24],
'num_heads': 8}),
**dict.fromkeys(['l', 'large'],
{'embed_dims': 768,
'depths': [2, 2, 40],
'num_heads': 12}),
} # yapf: disable
num_extra_tokens = 0
def __init__(self,
arch='base',
img_size=224,
patch_size=16,
inner_patches=4,
in_chans=3,
stem_mlp_ratio=3.,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.0,
norm_cfg=dict(type='LN'),
out_indices=[23],
ape=True,
rpe=False,
patch_norm=True,
frozen_stages=-1,
kernel_size=None,
pad_size=None,
layer_scale_init_value=0.0,
init_cfg=None):
super(HiViT, self).__init__(init_cfg=init_cfg)
if isinstance(arch, str):
arch = arch.lower()
assert arch in set(self.arch_zoo), \
f'Arch {arch} is not in default archs {set(self.arch_zoo)}'
self.arch_settings = self.arch_zoo[arch]
else:
essential_keys = {'embed_dims', 'depths', 'num_heads'}
assert isinstance(arch, dict) and set(arch) == essential_keys, \
f'Custom arch needs a dict with keys {essential_keys}'
self.arch_settings = arch
self.embed_dims = self.arch_settings['embed_dims']
self.depths = self.arch_settings['depths']
self.num_heads = self.arch_settings['num_heads']
self.num_stages = len(self.depths)
self.ape = ape
self.rpe = rpe
self.patch_size = patch_size
self.num_features = self.embed_dims
self.mlp_ratio = mlp_ratio
self.num_main_blocks = self.depths[-1]
self.out_indices = out_indices
self.out_indices[-1] = self.depths[-1] - 1
img_size = to_2tuple(img_size) if not isinstance(img_size,
tuple) else img_size
embed_dim = self.embed_dims // 2**(self.num_stages - 1)
# split image into non-overlapping patches
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
inner_patches=inner_patches,
in_chans=in_chans,
embed_dim=embed_dim,
norm_cfg=norm_cfg if patch_norm else None,
kernel_size=kernel_size,
pad_size=pad_size)
num_patches = self.patch_embed.num_patches
Hp, Wp = self.patch_embed.patches_resolution
if rpe:
assert Hp == Wp, 'If you use relative position, make sure H == W '
'of input size'
# absolute position embedding
if ape:
self.pos_embed = nn.Parameter(
torch.zeros(1, num_patches, self.num_features))
trunc_normal_(self.pos_embed, std=.02)
if rpe:
# get pair-wise relative position index for each token inside the
# window
coords_h = torch.arange(Hp)
coords_w = torch.arange(Wp)
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
coords_flatten = torch.flatten(coords, 1)
relative_coords = coords_flatten[:, :,
None] - coords_flatten[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += Hp - 1
relative_coords[:, :, 1] += Wp - 1
relative_coords[:, :, 0] *= 2 * Wp - 1
relative_position_index = relative_coords.sum(-1)
self.register_buffer('relative_position_index',
relative_position_index)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = iter(
x.item()
for x in torch.linspace(0, drop_path_rate,
sum(self.depths) + sum(self.depths[:-1])))
# build blocks
self.blocks = nn.ModuleList()
for stage_i, stage_depth in enumerate(self.depths):
is_main_stage = embed_dim == self.num_features
nhead = self.num_heads if is_main_stage else 0
ratio = mlp_ratio if is_main_stage else stem_mlp_ratio
# every block not in main stage includes two mlp blocks
stage_depth = stage_depth if is_main_stage else stage_depth * 2
for _ in range(stage_depth):
self.blocks.append(
BlockWithRPE(
Hp,
embed_dim,
nhead,
ratio,
qkv_bias,
qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=next(dpr),
rpe=rpe,
norm_cfg=norm_cfg,
layer_scale_init_value=layer_scale_init_value,
))
if stage_i + 1 < self.num_stages:
self.blocks.append(PatchMerge(embed_dim, norm_cfg))
embed_dim *= 2
self.frozen_stages = frozen_stages
if self.frozen_stages > 0:
self._freeze_stages()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def interpolate_pos_encoding(self, x, h, w):
npatch = x.shape[1]
N = self.pos_embed.shape[1]
if npatch == N and w == h:
return self.pos_embed
patch_pos_embed = self.pos_embed
dim = x.shape[-1]
w0 = w // self.patch_size
h0 = h // self.patch_size
# we add a small number to avoid floating point error in interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
w0, h0 = w0 + 0.1, h0 + 0.1
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)),
dim).permute(0, 3, 1, 2),
scale_factor=(h0 / math.sqrt(N), w0 / math.sqrt(N)),
mode='bicubic',
)
assert int(h0) == patch_pos_embed.shape[-2] and int(
w0) == patch_pos_embed.shape[-1]
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return patch_pos_embed
def forward(self, x):
B, C, H, W = x.shape
Hp, Wp = H // self.patch_size, W // self.patch_size
x = self.patch_embed(x)
outs = []
for i, blk in enumerate(self.blocks[:-self.num_main_blocks]):
x = blk(x)
if i in self.out_indices:
x = x.reshape(B, Hp, Wp, *x.shape[-3:]).permute(
0, 5, 1, 3, 2, 4).reshape(B, -1, Hp * x.shape[-3],
Wp * x.shape[-2]).contiguous()
outs.append(x)
x = x[..., 0, 0, :]
if self.ape:
x = x + self.interpolate_pos_encoding(x, H, W)
x = self.pos_drop(x)
rpe_index = True if self.rpe else None
for i, blk in enumerate(self.blocks[-self.num_main_blocks:]):
x = blk(x, rpe_index)
if i in self.out_indices:
x = x.transpose(1, 2).view(B, -1, Hp, Wp).contiguous()
outs.append(x)
return tuple(outs)
def _freeze_stages(self):
# freeze position embedding
if self.pos_embed is not None:
self.pos_embed.requires_grad = False
# set dropout to eval model
self.pos_drop.eval()
# freeze patch embedding
self.patch_embed.eval()
for param in self.patch_embed.parameters():
param.requires_grad = False
# freeze layers
for i in range(1, self.frozen_stages + 1):
m = self.blocks[i - 1]
m.eval()
for param in m.parameters():
param.requires_grad = False
# freeze the last layer norm
for param in self.fc_norm.parameters():
param.requires_grad = False
def get_layer_depth(self, param_name: str, prefix: str = ''):
"""Get the layer-wise depth of a parameter.
Args:
param_name (str): The name of the parameter.
prefix (str): The prefix for the parameter.
Defaults to an empty string.
Returns:
Tuple[int, int]: The layer-wise depth and the num of layers.
Note:
The first depth is the stem module (``layer_depth=0``), and the
last depth is the subsequent module (``layer_depth=num_layers-1``)
"""
self.num_layers = len(self.blocks)
num_layers = self.num_layers + 2
if not param_name.startswith(prefix):
# For subsequent module like head
return num_layers - 1, num_layers
param_name = param_name[len(prefix):]
if param_name in 'pos_embed':
layer_depth = 0
elif param_name.startswith('patch_embed'):
layer_depth = 0
elif param_name.startswith('layers'):
layer_id = int(param_name.split('.')[1])
layer_depth = layer_id + 1
else:
layer_depth = num_layers - 1
return layer_depth, num_layers
|