Spaces:
Runtime error
Runtime error
File size: 10,988 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
# Copyright (c) OpenMMLab. All rights reserved.
from pathlib import Path
from typing import Callable, List, Optional, Union
import numpy as np
import torch
from mmcv.image import imread
from mmengine.config import Config
from mmengine.dataset import BaseDataset, Compose, default_collate
from mmpretrain.registry import TRANSFORMS
from mmpretrain.structures import DataSample
from .base import BaseInferencer, InputType, ModelType
from .model import list_models
class ImageRetrievalInferencer(BaseInferencer):
"""The inferencer for image to image retrieval.
Args:
model (BaseModel | str | Config): A model name or a path to the config
file, or a :obj:`BaseModel` object. The model name can be found
by ``ImageRetrievalInferencer.list_models()`` and you can also
query it in :doc:`/modelzoo_statistics`.
prototype (str | list | dict | DataLoader, BaseDataset): The images to
be retrieved. It can be the following types:
- str: The directory of the the images.
- list: A list of path of the images.
- dict: A config dict of the a prototype dataset.
- BaseDataset: A prototype dataset.
- DataLoader: A data loader to load the prototype data.
prototype_cache (str, optional): The path of the generated prototype
features. If exists, directly load the cache instead of re-generate
the prototype features. If not exists, save the generated features
to the path. Defaults to None.
pretrained (str, optional): Path to the checkpoint. If None, it will
try to find a pre-defined weight from the model you specified
(only work if the ``model`` is a model name). Defaults to None.
device (str, optional): Device to run inference. If None, the available
device will be automatically used. Defaults to None.
**kwargs: Other keyword arguments to initialize the model (only work if
the ``model`` is a model name).
Example:
>>> from mmpretrain import ImageRetrievalInferencer
>>> inferencer = ImageRetrievalInferencer(
... 'resnet50-arcface_inshop',
... prototype='./demo/',
... prototype_cache='img_retri.pth')
>>> inferencer('demo/cat-dog.png', topk=2)[0][1]
{'match_score': tensor(0.4088, device='cuda:0'),
'sample_idx': 3,
'sample': {'img_path': './demo/dog.jpg'}}
""" # noqa: E501
visualize_kwargs: set = {
'draw_score', 'resize', 'show_dir', 'show', 'wait_time', 'topk'
}
postprocess_kwargs: set = {'topk'}
def __init__(
self,
model: ModelType,
prototype,
prototype_cache=None,
prepare_batch_size=8,
pretrained: Union[bool, str] = True,
device: Union[str, torch.device, None] = None,
**kwargs,
) -> None:
super().__init__(
model=model, pretrained=pretrained, device=device, **kwargs)
self.prototype_dataset = self._prepare_prototype(
prototype, prototype_cache, prepare_batch_size)
def _prepare_prototype(self, prototype, cache=None, batch_size=8):
from mmengine.dataset import DefaultSampler
from torch.utils.data import DataLoader
def build_dataloader(dataset):
return DataLoader(
dataset,
batch_size=batch_size,
collate_fn=default_collate,
sampler=DefaultSampler(dataset, shuffle=False),
persistent_workers=False,
)
if isinstance(prototype, str):
# A directory path of images
prototype = dict(
type='CustomDataset', with_label=False, data_root=prototype)
if isinstance(prototype, list):
test_pipeline = [dict(type='LoadImageFromFile'), self.pipeline]
dataset = BaseDataset(
lazy_init=True, serialize_data=False, pipeline=test_pipeline)
dataset.data_list = [{
'sample_idx': i,
'img_path': file
} for i, file in enumerate(prototype)]
dataset._fully_initialized = True
dataloader = build_dataloader(dataset)
elif isinstance(prototype, dict):
# A config of dataset
from mmpretrain.registry import DATASETS
test_pipeline = [dict(type='LoadImageFromFile'), self.pipeline]
dataset = DATASETS.build(prototype)
dataloader = build_dataloader(dataset)
elif isinstance(prototype, DataLoader):
dataset = prototype.dataset
dataloader = prototype
elif isinstance(prototype, BaseDataset):
dataset = prototype
dataloader = build_dataloader(dataset)
else:
raise TypeError(f'Unsupported prototype type {type(prototype)}.')
if cache is not None and Path(cache).exists():
self.model.prototype = cache
else:
self.model.prototype = dataloader
self.model.prepare_prototype()
from mmengine.logging import MMLogger
logger = MMLogger.get_current_instance()
if cache is None:
logger.info('The prototype has been prepared, you can use '
'`save_prototype` to dump it into a pickle '
'file for the future usage.')
elif not Path(cache).exists():
self.save_prototype(cache)
logger.info(f'The prototype has been saved at {cache}.')
return dataset
def save_prototype(self, path):
self.model.dump_prototype(path)
def __call__(self,
inputs: InputType,
return_datasamples: bool = False,
batch_size: int = 1,
**kwargs) -> dict:
"""Call the inferencer.
Args:
inputs (str | array | list): The image path or array, or a list of
images.
return_datasamples (bool): Whether to return results as
:obj:`DataSample`. Defaults to False.
batch_size (int): Batch size. Defaults to 1.
resize (int, optional): Resize the long edge of the image to the
specified length before visualization. Defaults to None.
draw_score (bool): Whether to draw the match scores.
Defaults to True.
show (bool): Whether to display the visualization result in a
window. Defaults to False.
wait_time (float): The display time (s). Defaults to 0, which means
"forever".
show_dir (str, optional): If not None, save the visualization
results in the specified directory. Defaults to None.
Returns:
list: The inference results.
"""
return super().__call__(inputs, return_datasamples, batch_size,
**kwargs)
def _init_pipeline(self, cfg: Config) -> Callable:
test_pipeline_cfg = cfg.test_dataloader.dataset.pipeline
from mmpretrain.datasets import remove_transform
# Image loading is finished in `self.preprocess`.
test_pipeline_cfg = remove_transform(test_pipeline_cfg,
'LoadImageFromFile')
test_pipeline = Compose(
[TRANSFORMS.build(t) for t in test_pipeline_cfg])
return test_pipeline
def preprocess(self, inputs: List[InputType], batch_size: int = 1):
def load_image(input_):
img = imread(input_)
if img is None:
raise ValueError(f'Failed to read image {input_}.')
return dict(
img=img,
img_shape=img.shape[:2],
ori_shape=img.shape[:2],
)
pipeline = Compose([load_image, self.pipeline])
chunked_data = self._get_chunk_data(map(pipeline, inputs), batch_size)
yield from map(default_collate, chunked_data)
def visualize(self,
ori_inputs: List[InputType],
preds: List[DataSample],
topk: int = 3,
resize: Optional[int] = 224,
show: bool = False,
wait_time: int = 0,
draw_score=True,
show_dir=None):
if not show and show_dir is None:
return None
if self.visualizer is None:
from mmpretrain.visualization import UniversalVisualizer
self.visualizer = UniversalVisualizer()
visualization = []
for i, (input_, data_sample) in enumerate(zip(ori_inputs, preds)):
image = imread(input_)
if isinstance(input_, str):
# The image loaded from path is BGR format.
image = image[..., ::-1]
name = Path(input_).stem
else:
name = str(i)
if show_dir is not None:
show_dir = Path(show_dir)
show_dir.mkdir(exist_ok=True)
out_file = str((show_dir / name).with_suffix('.png'))
else:
out_file = None
self.visualizer.visualize_image_retrieval(
image,
data_sample,
self.prototype_dataset,
topk=topk,
resize=resize,
draw_score=draw_score,
show=show,
wait_time=wait_time,
name=name,
out_file=out_file)
visualization.append(self.visualizer.get_image())
if show:
self.visualizer.close()
return visualization
def postprocess(
self,
preds: List[DataSample],
visualization: List[np.ndarray],
return_datasamples=False,
topk=1,
) -> dict:
if return_datasamples:
return preds
results = []
for data_sample in preds:
match_scores, indices = torch.topk(data_sample.pred_score, k=topk)
matches = []
for match_score, sample_idx in zip(match_scores, indices):
sample = self.prototype_dataset.get_data_info(
sample_idx.item())
sample_idx = sample.pop('sample_idx')
matches.append({
'match_score': match_score,
'sample_idx': sample_idx,
'sample': sample
})
results.append(matches)
return results
@staticmethod
def list_models(pattern: Optional[str] = None):
"""List all available model names.
Args:
pattern (str | None): A wildcard pattern to match model names.
Returns:
List[str]: a list of model names.
"""
return list_models(pattern=pattern, task='Image Retrieval')
|