Spaces:
Runtime error
Runtime error
File size: 7,054 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# Copyright (c) OpenMMLab. All rights reserved.
from itertools import product
from typing import Tuple
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from torch import Tensor
def get_simcc_normalized(batch_pred_simcc, sigma=None):
"""Normalize the predicted SimCC.
Args:
batch_pred_simcc (torch.Tensor): The predicted SimCC.
sigma (float): The sigma of the Gaussian distribution.
Returns:
torch.Tensor: The normalized SimCC.
"""
B, K, _ = batch_pred_simcc.shape
# Scale and clamp the tensor
if sigma is not None:
batch_pred_simcc = batch_pred_simcc / (sigma * np.sqrt(np.pi * 2))
batch_pred_simcc = batch_pred_simcc.clamp(min=0)
# Compute the binary mask
mask = (batch_pred_simcc.amax(dim=-1) > 1).reshape(B, K, 1)
# Normalize the tensor using the maximum value
norm = (batch_pred_simcc / batch_pred_simcc.amax(dim=-1).reshape(B, K, 1))
# Apply normalization
batch_pred_simcc = torch.where(mask, norm, batch_pred_simcc)
return batch_pred_simcc
def get_simcc_maximum(simcc_x: np.ndarray,
simcc_y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Get maximum response location and value from simcc representations.
Note:
instance number: N
num_keypoints: K
heatmap height: H
heatmap width: W
Args:
simcc_x (np.ndarray): x-axis SimCC in shape (K, Wx) or (N, K, Wx)
simcc_y (np.ndarray): y-axis SimCC in shape (K, Wy) or (N, K, Wy)
Returns:
tuple:
- locs (np.ndarray): locations of maximum heatmap responses in shape
(K, 2) or (N, K, 2)
- vals (np.ndarray): values of maximum heatmap responses in shape
(K,) or (N, K)
"""
assert isinstance(simcc_x, np.ndarray), ('simcc_x should be numpy.ndarray')
assert isinstance(simcc_y, np.ndarray), ('simcc_y should be numpy.ndarray')
assert simcc_x.ndim == 2 or simcc_x.ndim == 3, (
f'Invalid shape {simcc_x.shape}')
assert simcc_y.ndim == 2 or simcc_y.ndim == 3, (
f'Invalid shape {simcc_y.shape}')
assert simcc_x.ndim == simcc_y.ndim, (
f'{simcc_x.shape} != {simcc_y.shape}')
if simcc_x.ndim == 3:
N, K, Wx = simcc_x.shape
simcc_x = simcc_x.reshape(N * K, -1)
simcc_y = simcc_y.reshape(N * K, -1)
else:
N = None
x_locs = np.argmax(simcc_x, axis=1)
y_locs = np.argmax(simcc_y, axis=1)
locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32)
max_val_x = np.amax(simcc_x, axis=1)
max_val_y = np.amax(simcc_y, axis=1)
mask = max_val_x > max_val_y
max_val_x[mask] = max_val_y[mask]
vals = max_val_x
locs[vals <= 0.] = -1
if N:
locs = locs.reshape(N, K, 2)
vals = vals.reshape(N, K)
return locs, vals
def get_heatmap_maximum(heatmaps: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Get maximum response location and value from heatmaps.
Note:
batch_size: B
num_keypoints: K
heatmap height: H
heatmap width: W
Args:
heatmaps (np.ndarray): Heatmaps in shape (K, H, W) or (B, K, H, W)
Returns:
tuple:
- locs (np.ndarray): locations of maximum heatmap responses in shape
(K, 2) or (B, K, 2)
- vals (np.ndarray): values of maximum heatmap responses in shape
(K,) or (B, K)
"""
assert isinstance(heatmaps,
np.ndarray), ('heatmaps should be numpy.ndarray')
assert heatmaps.ndim == 3 or heatmaps.ndim == 4, (
f'Invalid shape {heatmaps.shape}')
if heatmaps.ndim == 3:
K, H, W = heatmaps.shape
B = None
heatmaps_flatten = heatmaps.reshape(K, -1)
else:
B, K, H, W = heatmaps.shape
heatmaps_flatten = heatmaps.reshape(B * K, -1)
y_locs, x_locs = np.unravel_index(
np.argmax(heatmaps_flatten, axis=1), shape=(H, W))
locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32)
vals = np.amax(heatmaps_flatten, axis=1)
locs[vals <= 0.] = -1
if B:
locs = locs.reshape(B, K, 2)
vals = vals.reshape(B, K)
return locs, vals
def gaussian_blur(heatmaps: np.ndarray, kernel: int = 11) -> np.ndarray:
"""Modulate heatmap distribution with Gaussian.
Note:
- num_keypoints: K
- heatmap height: H
- heatmap width: W
Args:
heatmaps (np.ndarray[K, H, W]): model predicted heatmaps.
kernel (int): Gaussian kernel size (K) for modulation, which should
match the heatmap gaussian sigma when training.
K=17 for sigma=3 and k=11 for sigma=2.
Returns:
np.ndarray ([K, H, W]): Modulated heatmap distribution.
"""
assert kernel % 2 == 1
border = (kernel - 1) // 2
K, H, W = heatmaps.shape
for k in range(K):
origin_max = np.max(heatmaps[k])
dr = np.zeros((H + 2 * border, W + 2 * border), dtype=np.float32)
dr[border:-border, border:-border] = heatmaps[k].copy()
dr = cv2.GaussianBlur(dr, (kernel, kernel), 0)
heatmaps[k] = dr[border:-border, border:-border].copy()
heatmaps[k] *= origin_max / np.max(heatmaps[k])
return heatmaps
def gaussian_blur1d(simcc: np.ndarray, kernel: int = 11) -> np.ndarray:
"""Modulate simcc distribution with Gaussian.
Note:
- num_keypoints: K
- simcc length: Wx
Args:
simcc (np.ndarray[K, Wx]): model predicted simcc.
kernel (int): Gaussian kernel size (K) for modulation, which should
match the simcc gaussian sigma when training.
K=17 for sigma=3 and k=11 for sigma=2.
Returns:
np.ndarray ([K, Wx]): Modulated simcc distribution.
"""
assert kernel % 2 == 1
border = (kernel - 1) // 2
N, K, Wx = simcc.shape
for n, k in product(range(N), range(K)):
origin_max = np.max(simcc[n, k])
dr = np.zeros((1, Wx + 2 * border), dtype=np.float32)
dr[0, border:-border] = simcc[n, k].copy()
dr = cv2.GaussianBlur(dr, (kernel, 1), 0)
simcc[n, k] = dr[0, border:-border].copy()
simcc[n, k] *= origin_max / np.max(simcc[n, k])
return simcc
def batch_heatmap_nms(batch_heatmaps: Tensor, kernel_size: int = 5):
"""Apply NMS on a batch of heatmaps.
Args:
batch_heatmaps (Tensor): batch heatmaps in shape (B, K, H, W)
kernel_size (int): The kernel size of the NMS which should be
a odd integer. Defaults to 5
Returns:
Tensor: The batch heatmaps after NMS.
"""
assert isinstance(kernel_size, int) and kernel_size % 2 == 1, \
f'The kernel_size should be an odd integer, got {kernel_size}'
padding = (kernel_size - 1) // 2
maximum = F.max_pool2d(
batch_heatmaps, kernel_size, stride=1, padding=padding)
maximum_indicator = torch.eq(batch_heatmaps, maximum)
batch_heatmaps = batch_heatmaps * maximum_indicator.float()
return batch_heatmaps
|