File size: 20,970 Bytes
cc0dd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
# Copyright (c) OpenMMLab. All rights reserved.
from collections import namedtuple
from itertools import product
from typing import Any, List, Optional, Tuple

import numpy as np
import torch
from munkres import Munkres
from torch import Tensor

from mmpose.registry import KEYPOINT_CODECS
from mmpose.utils.tensor_utils import to_numpy
from .base import BaseKeypointCodec
from .utils import (batch_heatmap_nms, generate_gaussian_heatmaps,
                    generate_udp_gaussian_heatmaps, refine_keypoints,
                    refine_keypoints_dark_udp)


def _group_keypoints_by_tags(vals: np.ndarray,
                             tags: np.ndarray,
                             locs: np.ndarray,
                             keypoint_order: List[int],
                             val_thr: float,
                             tag_thr: float = 1.0,
                             max_groups: Optional[int] = None) -> np.ndarray:
    """Group the keypoints by tags using Munkres algorithm.

    Note:

        - keypoint number: K
        - candidate number: M
        - tag dimenssion: L
        - coordinate dimension: D
        - group number: G

    Args:
        vals (np.ndarray): The heatmap response values of keypoints in shape
            (K, M)
        tags (np.ndarray): The tags of the keypoint candidates in shape
            (K, M, L)
        locs (np.ndarray): The locations of the keypoint candidates in shape
            (K, M, D)
        keypoint_order (List[int]): The grouping order of the keypoints.
            The groupping usually starts from a keypoints around the head and
            torso, and gruadually moves out to the limbs
        val_thr (float): The threshold of the keypoint response value
        tag_thr (float): The maximum allowed tag distance when matching a
            keypoint to a group. A keypoint with larger tag distance to any
            of the existing groups will initializes a new group
        max_groups (int, optional): The maximum group number. ``None`` means
            no limitation. Defaults to ``None``

    Returns:
        np.ndarray: grouped keypoints in shape (G, K, D+1), where the last
        dimenssion is the concatenated keypoint coordinates and scores.
    """
    K, M, D = locs.shape
    assert vals.shape == tags.shape[:2] == (K, M)
    assert len(keypoint_order) == K

    # Build Munkres instance
    munkres = Munkres()

    # Build a group pool, each group contains the keypoints of an instance
    groups = []

    Group = namedtuple('Group', field_names=['kpts', 'scores', 'tag_list'])

    def _init_group():
        """Initialize a group, which is composed of the keypoints, keypoint
        scores and the tag of each keypoint."""
        _group = Group(
            kpts=np.zeros((K, D), dtype=np.float32),
            scores=np.zeros(K, dtype=np.float32),
            tag_list=[])
        return _group

    for i in keypoint_order:
        # Get all valid candidate of the i-th keypoints
        valid = vals[i] > val_thr
        if not valid.any():
            continue

        tags_i = tags[i, valid]  # (M', L)
        vals_i = vals[i, valid]  # (M',)
        locs_i = locs[i, valid]  # (M', D)

        if len(groups) == 0:  # Initialize the group pool
            for tag, val, loc in zip(tags_i, vals_i, locs_i):
                group = _init_group()
                group.kpts[i] = loc
                group.scores[i] = val
                group.tag_list.append(tag)

                groups.append(group)

        else:  # Match keypoints to existing groups
            groups = groups[:max_groups]
            group_tags = [np.mean(g.tag_list, axis=0) for g in groups]

            # Calculate distance matrix between group tags and tag candidates
            # of the i-th keypoint
            # Shape: (M', 1, L) , (1, G, L) -> (M', G, L)
            diff = tags_i[:, None] - np.array(group_tags)[None]
            dists = np.linalg.norm(diff, ord=2, axis=2)
            num_kpts, num_groups = dists.shape[:2]

            # Experimental cost function for keypoint-group matching
            costs = np.round(dists) * 100 - vals_i[..., None]
            if num_kpts > num_groups:
                padding = np.full((num_kpts, num_kpts - num_groups),
                                  1e10,
                                  dtype=np.float32)
                costs = np.concatenate((costs, padding), axis=1)

            # Match keypoints and groups by Munkres algorithm
            matches = munkres.compute(costs)
            for kpt_idx, group_idx in matches:
                if group_idx < num_groups and dists[kpt_idx,
                                                    group_idx] < tag_thr:
                    # Add the keypoint to the matched group
                    group = groups[group_idx]
                else:
                    # Initialize a new group with unmatched keypoint
                    group = _init_group()
                    groups.append(group)

                group.kpts[i] = locs_i[kpt_idx]
                group.scores[i] = vals_i[kpt_idx]
                group.tag_list.append(tags_i[kpt_idx])

    groups = groups[:max_groups]
    if groups:
        grouped_keypoints = np.stack(
            [np.r_['1', g.kpts, g.scores[:, None]] for g in groups])
    else:
        grouped_keypoints = np.empty((0, K, D + 1))

    return grouped_keypoints


@KEYPOINT_CODECS.register_module()
class AssociativeEmbedding(BaseKeypointCodec):
    """Encode/decode keypoints with the method introduced in "Associative
    Embedding". This is an asymmetric codec, where the keypoints are
    represented as gaussian heatmaps and position indices during encoding, and
    restored from predicted heatmaps and group tags.

    See the paper `Associative Embedding: End-to-End Learning for Joint
    Detection and Grouping`_ by Newell et al (2017) for details

    Note:

        - instance number: N
        - keypoint number: K
        - keypoint dimension: D
        - embedding tag dimension: L
        - image size: [w, h]
        - heatmap size: [W, H]

    Encoded:

        - heatmaps (np.ndarray): The generated heatmap in shape (K, H, W)
            where [W, H] is the `heatmap_size`
        - keypoint_indices (np.ndarray): The keypoint position indices in shape
            (N, K, 2). Each keypoint's index is [i, v], where i is the position
            index in the heatmap (:math:`i=y*w+x`) and v is the visibility
        - keypoint_weights (np.ndarray): The target weights in shape (N, K)

    Args:
        input_size (tuple): Image size in [w, h]
        heatmap_size (tuple): Heatmap size in [W, H]
        sigma (float): The sigma value of the Gaussian heatmap
        use_udp (bool): Whether use unbiased data processing. See
            `UDP (CVPR 2020)`_ for details. Defaults to ``False``
        decode_keypoint_order (List[int]): The grouping order of the
            keypoint indices. The groupping usually starts from a keypoints
            around the head and torso, and gruadually moves out to the limbs
        decode_keypoint_thr (float): The threshold of keypoint response value
            in heatmaps. Defaults to 0.1
        decode_tag_thr (float): The maximum allowed tag distance when matching
            a keypoint to a group. A keypoint with larger tag distance to any
            of the existing groups will initializes a new group. Defaults to
            1.0
        decode_nms_kernel (int): The kernel size of the NMS during decoding,
            which should be an odd integer. Defaults to 5
        decode_gaussian_kernel (int): The kernel size of the Gaussian blur
            during decoding, which should be an odd integer. It is only used
            when ``self.use_udp==True``. Defaults to 3
        decode_topk (int): The number top-k candidates of each keypoints that
            will be retrieved from the heatmaps during dedocding. Defaults to
            20
        decode_max_instances (int, optional): The maximum number of instances
            to decode. ``None`` means no limitation to the instance number.
            Defaults to ``None``

    .. _`Associative Embedding: End-to-End Learning for Joint Detection and
    Grouping`: https://arxiv.org/abs/1611.05424
    .. _`UDP (CVPR 2020)`: https://arxiv.org/abs/1911.07524
    """

    def __init__(
        self,
        input_size: Tuple[int, int],
        heatmap_size: Tuple[int, int],
        sigma: Optional[float] = None,
        use_udp: bool = False,
        decode_keypoint_order: List[int] = [],
        decode_nms_kernel: int = 5,
        decode_gaussian_kernel: int = 3,
        decode_keypoint_thr: float = 0.1,
        decode_tag_thr: float = 1.0,
        decode_topk: int = 20,
        decode_max_instances: Optional[int] = None,
    ) -> None:
        super().__init__()
        self.input_size = input_size
        self.heatmap_size = heatmap_size
        self.use_udp = use_udp
        self.decode_nms_kernel = decode_nms_kernel
        self.decode_gaussian_kernel = decode_gaussian_kernel
        self.decode_keypoint_thr = decode_keypoint_thr
        self.decode_tag_thr = decode_tag_thr
        self.decode_topk = decode_topk
        self.decode_max_instances = decode_max_instances
        self.dedecode_keypoint_order = decode_keypoint_order.copy()

        if self.use_udp:
            self.scale_factor = ((np.array(input_size) - 1) /
                                 (np.array(heatmap_size) - 1)).astype(
                                     np.float32)
        else:
            self.scale_factor = (np.array(input_size) /
                                 heatmap_size).astype(np.float32)

        if sigma is None:
            sigma = (heatmap_size[0] * heatmap_size[1])**0.5 / 64
        self.sigma = sigma

    def encode(
        self,
        keypoints: np.ndarray,
        keypoints_visible: Optional[np.ndarray] = None
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
        """Encode keypoints into heatmaps and position indices. Note that the
        original keypoint coordinates should be in the input image space.

        Args:
            keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D)
            keypoints_visible (np.ndarray): Keypoint visibilities in shape
                (N, K)

        Returns:
            dict:
            - heatmaps (np.ndarray): The generated heatmap in shape
                (K, H, W) where [W, H] is the `heatmap_size`
            - keypoint_indices (np.ndarray): The keypoint position indices
                in shape (N, K, 2). Each keypoint's index is [i, v], where i
                is the position index in the heatmap (:math:`i=y*w+x`) and v
                is the visibility
            - keypoint_weights (np.ndarray): The target weights in shape
                (N, K)
        """

        if keypoints_visible is None:
            keypoints_visible = np.ones(keypoints.shape[:2], dtype=np.float32)

        # keypoint coordinates in heatmap
        _keypoints = keypoints / self.scale_factor

        if self.use_udp:
            heatmaps, keypoint_weights = generate_udp_gaussian_heatmaps(
                heatmap_size=self.heatmap_size,
                keypoints=_keypoints,
                keypoints_visible=keypoints_visible,
                sigma=self.sigma)
        else:
            heatmaps, keypoint_weights = generate_gaussian_heatmaps(
                heatmap_size=self.heatmap_size,
                keypoints=_keypoints,
                keypoints_visible=keypoints_visible,
                sigma=self.sigma)

        keypoint_indices = self._encode_keypoint_indices(
            heatmap_size=self.heatmap_size,
            keypoints=_keypoints,
            keypoints_visible=keypoints_visible)

        encoded = dict(
            heatmaps=heatmaps,
            keypoint_indices=keypoint_indices,
            keypoint_weights=keypoint_weights)

        return encoded

    def _encode_keypoint_indices(self, heatmap_size: Tuple[int, int],
                                 keypoints: np.ndarray,
                                 keypoints_visible: np.ndarray) -> np.ndarray:
        w, h = heatmap_size
        N, K, _ = keypoints.shape
        keypoint_indices = np.zeros((N, K, 2), dtype=np.int64)

        for n, k in product(range(N), range(K)):
            x, y = (keypoints[n, k] + 0.5).astype(np.int64)
            index = y * w + x
            vis = (keypoints_visible[n, k] > 0.5 and 0 <= x < w and 0 <= y < h)
            keypoint_indices[n, k] = [index, vis]

        return keypoint_indices

    def decode(self, encoded: Any) -> Tuple[np.ndarray, np.ndarray]:
        raise NotImplementedError()

    def _get_batch_topk(self, batch_heatmaps: Tensor, batch_tags: Tensor,
                        k: int):
        """Get top-k response values from the heatmaps and corresponding tag
        values from the tagging heatmaps.

        Args:
            batch_heatmaps (Tensor): Keypoint detection heatmaps in shape
                (B, K, H, W)
            batch_tags (Tensor): Tagging heatmaps in shape (B, C, H, W), where
                the tag dim C is 2*K when using flip testing, or K otherwise
            k (int): The number of top responses to get

        Returns:
            tuple:
            - topk_vals (Tensor): Top-k response values of each heatmap in
                shape (B, K, Topk)
            - topk_tags (Tensor): The corresponding embedding tags of the
                top-k responses, in shape (B, K, Topk, L)
            - topk_locs (Tensor): The location of the top-k responses in each
                heatmap, in shape (B, K, Topk, 2) where last dimension
                represents x and y coordinates
        """
        B, K, H, W = batch_heatmaps.shape
        L = batch_tags.shape[1] // K

        # shape of topk_val, top_indices: (B, K, TopK)
        topk_vals, topk_indices = batch_heatmaps.flatten(-2, -1).topk(
            k, dim=-1)

        topk_tags_per_kpts = [
            torch.gather(_tag, dim=2, index=topk_indices)
            for _tag in torch.unbind(batch_tags.view(B, L, K, H * W), dim=1)
        ]

        topk_tags = torch.stack(topk_tags_per_kpts, dim=-1)  # (B, K, TopK, L)
        topk_locs = torch.stack([topk_indices % W, topk_indices // W],
                                dim=-1)  # (B, K, TopK, 2)

        return topk_vals, topk_tags, topk_locs

    def _group_keypoints(self, batch_vals: np.ndarray, batch_tags: np.ndarray,
                         batch_locs: np.ndarray):
        """Group keypoints into groups (each represents an instance) by tags.

        Args:
            batch_vals (Tensor): Heatmap response values of keypoint
                candidates in shape (B, K, Topk)
            batch_tags (Tensor): Tags of keypoint candidates in shape
                (B, K, Topk, L)
            batch_locs (Tensor): Locations of keypoint candidates in shape
                (B, K, Topk, 2)

        Returns:
            List[np.ndarray]: Grouping results of a batch, each element is a
            np.ndarray (in shape [N, K, D+1]) that contains the groups
            detected in an image, including both keypoint coordinates and
            scores.
        """

        def _group_func(inputs: Tuple):
            vals, tags, locs = inputs
            return _group_keypoints_by_tags(
                vals,
                tags,
                locs,
                keypoint_order=self.dedecode_keypoint_order,
                val_thr=self.decode_keypoint_thr,
                tag_thr=self.decode_tag_thr,
                max_groups=self.decode_max_instances)

        _results = map(_group_func, zip(batch_vals, batch_tags, batch_locs))
        results = list(_results)
        return results

    def _fill_missing_keypoints(self, keypoints: np.ndarray,
                                keypoint_scores: np.ndarray,
                                heatmaps: np.ndarray, tags: np.ndarray):
        """Fill the missing keypoints in the initial predictions.

        Args:
            keypoints (np.ndarray): Keypoint predictions in shape (N, K, D)
            keypoint_scores (np.ndarray): Keypint score predictions in shape
                (N, K), in which 0 means the corresponding keypoint is
                missing in the initial prediction
            heatmaps (np.ndarry): Heatmaps in shape (K, H, W)
            tags (np.ndarray): Tagging heatmaps in shape (C, H, W) where
                C=L*K

        Returns:
            tuple:
            - keypoints (np.ndarray): Keypoint predictions with missing
                ones filled
            - keypoint_scores (np.ndarray): Keypoint score predictions with
                missing ones filled
        """

        N, K = keypoints.shape[:2]
        H, W = heatmaps.shape[1:]
        L = tags.shape[0] // K
        keypoint_tags = [tags[k::K] for k in range(K)]

        for n in range(N):
            # Calculate the instance tag (mean tag of detected keypoints)
            _tag = []
            for k in range(K):
                if keypoint_scores[n, k] > 0:
                    x, y = keypoints[n, k, :2].astype(np.int64)
                    x = np.clip(x, 0, W - 1)
                    y = np.clip(y, 0, H - 1)
                    _tag.append(keypoint_tags[k][:, y, x])

            tag = np.mean(_tag, axis=0)
            tag = tag.reshape(L, 1, 1)
            # Search maximum response of the missing keypoints
            for k in range(K):
                if keypoint_scores[n, k] > 0:
                    continue
                dist_map = np.linalg.norm(
                    keypoint_tags[k] - tag, ord=2, axis=0)
                cost_map = np.round(dist_map) * 100 - heatmaps[k]  # H, W
                y, x = np.unravel_index(np.argmin(cost_map), shape=(H, W))
                keypoints[n, k] = [x, y]
                keypoint_scores[n, k] = heatmaps[k, y, x]

        return keypoints, keypoint_scores

    def batch_decode(self, batch_heatmaps: Tensor, batch_tags: Tensor
                     ) -> Tuple[List[np.ndarray], List[np.ndarray]]:
        """Decode the keypoint coordinates from a batch of heatmaps and tagging
        heatmaps. The decoded keypoint coordinates are in the input image
        space.

        Args:
            batch_heatmaps (Tensor): Keypoint detection heatmaps in shape
                (B, K, H, W)
            batch_tags (Tensor): Tagging heatmaps in shape (B, C, H, W), where
                :math:`C=L*K`

        Returns:
            tuple:
            - batch_keypoints (List[np.ndarray]): Decoded keypoint coordinates
                of the batch, each is in shape (N, K, D)
            - batch_scores (List[np.ndarray]): Decoded keypoint scores of the
                batch, each is in shape (N, K). It usually represents the
                confidience of the keypoint prediction
        """
        B, _, H, W = batch_heatmaps.shape
        assert batch_tags.shape[0] == B and batch_tags.shape[2:4] == (H, W), (
            f'Mismatched shapes of heatmap ({batch_heatmaps.shape}) and '
            f'tagging map ({batch_tags.shape})')

        # Heatmap NMS
        batch_heatmaps = batch_heatmap_nms(batch_heatmaps,
                                           self.decode_nms_kernel)

        # Get top-k in each heatmap and and convert to numpy
        batch_topk_vals, batch_topk_tags, batch_topk_locs = to_numpy(
            self._get_batch_topk(
                batch_heatmaps, batch_tags, k=self.decode_topk))

        # Group keypoint candidates into groups (instances)
        batch_groups = self._group_keypoints(batch_topk_vals, batch_topk_tags,
                                             batch_topk_locs)

        # Convert to numpy
        batch_heatmaps_np = to_numpy(batch_heatmaps)
        batch_tags_np = to_numpy(batch_tags)

        # Refine the keypoint prediction
        batch_keypoints = []
        batch_keypoint_scores = []
        for i, (groups, heatmaps, tags) in enumerate(
                zip(batch_groups, batch_heatmaps_np, batch_tags_np)):

            keypoints, scores = groups[..., :-1], groups[..., -1]

            if keypoints.size > 0:
                # identify missing keypoints
                keypoints, scores = self._fill_missing_keypoints(
                    keypoints, scores, heatmaps, tags)

                # refine keypoint coordinates according to heatmap distribution
                if self.use_udp:
                    keypoints = refine_keypoints_dark_udp(
                        keypoints,
                        heatmaps,
                        blur_kernel_size=self.decode_gaussian_kernel)
                else:
                    keypoints = refine_keypoints(keypoints, heatmaps)

            batch_keypoints.append(keypoints)
            batch_keypoint_scores.append(scores)

        # restore keypoint scale
        batch_keypoints = [
            kpts * self.scale_factor for kpts in batch_keypoints
        ]

        return batch_keypoints, batch_keypoint_scores