Spaces:
Runtime error
Runtime error
File size: 20,970 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
# Copyright (c) OpenMMLab. All rights reserved.
from collections import namedtuple
from itertools import product
from typing import Any, List, Optional, Tuple
import numpy as np
import torch
from munkres import Munkres
from torch import Tensor
from mmpose.registry import KEYPOINT_CODECS
from mmpose.utils.tensor_utils import to_numpy
from .base import BaseKeypointCodec
from .utils import (batch_heatmap_nms, generate_gaussian_heatmaps,
generate_udp_gaussian_heatmaps, refine_keypoints,
refine_keypoints_dark_udp)
def _group_keypoints_by_tags(vals: np.ndarray,
tags: np.ndarray,
locs: np.ndarray,
keypoint_order: List[int],
val_thr: float,
tag_thr: float = 1.0,
max_groups: Optional[int] = None) -> np.ndarray:
"""Group the keypoints by tags using Munkres algorithm.
Note:
- keypoint number: K
- candidate number: M
- tag dimenssion: L
- coordinate dimension: D
- group number: G
Args:
vals (np.ndarray): The heatmap response values of keypoints in shape
(K, M)
tags (np.ndarray): The tags of the keypoint candidates in shape
(K, M, L)
locs (np.ndarray): The locations of the keypoint candidates in shape
(K, M, D)
keypoint_order (List[int]): The grouping order of the keypoints.
The groupping usually starts from a keypoints around the head and
torso, and gruadually moves out to the limbs
val_thr (float): The threshold of the keypoint response value
tag_thr (float): The maximum allowed tag distance when matching a
keypoint to a group. A keypoint with larger tag distance to any
of the existing groups will initializes a new group
max_groups (int, optional): The maximum group number. ``None`` means
no limitation. Defaults to ``None``
Returns:
np.ndarray: grouped keypoints in shape (G, K, D+1), where the last
dimenssion is the concatenated keypoint coordinates and scores.
"""
K, M, D = locs.shape
assert vals.shape == tags.shape[:2] == (K, M)
assert len(keypoint_order) == K
# Build Munkres instance
munkres = Munkres()
# Build a group pool, each group contains the keypoints of an instance
groups = []
Group = namedtuple('Group', field_names=['kpts', 'scores', 'tag_list'])
def _init_group():
"""Initialize a group, which is composed of the keypoints, keypoint
scores and the tag of each keypoint."""
_group = Group(
kpts=np.zeros((K, D), dtype=np.float32),
scores=np.zeros(K, dtype=np.float32),
tag_list=[])
return _group
for i in keypoint_order:
# Get all valid candidate of the i-th keypoints
valid = vals[i] > val_thr
if not valid.any():
continue
tags_i = tags[i, valid] # (M', L)
vals_i = vals[i, valid] # (M',)
locs_i = locs[i, valid] # (M', D)
if len(groups) == 0: # Initialize the group pool
for tag, val, loc in zip(tags_i, vals_i, locs_i):
group = _init_group()
group.kpts[i] = loc
group.scores[i] = val
group.tag_list.append(tag)
groups.append(group)
else: # Match keypoints to existing groups
groups = groups[:max_groups]
group_tags = [np.mean(g.tag_list, axis=0) for g in groups]
# Calculate distance matrix between group tags and tag candidates
# of the i-th keypoint
# Shape: (M', 1, L) , (1, G, L) -> (M', G, L)
diff = tags_i[:, None] - np.array(group_tags)[None]
dists = np.linalg.norm(diff, ord=2, axis=2)
num_kpts, num_groups = dists.shape[:2]
# Experimental cost function for keypoint-group matching
costs = np.round(dists) * 100 - vals_i[..., None]
if num_kpts > num_groups:
padding = np.full((num_kpts, num_kpts - num_groups),
1e10,
dtype=np.float32)
costs = np.concatenate((costs, padding), axis=1)
# Match keypoints and groups by Munkres algorithm
matches = munkres.compute(costs)
for kpt_idx, group_idx in matches:
if group_idx < num_groups and dists[kpt_idx,
group_idx] < tag_thr:
# Add the keypoint to the matched group
group = groups[group_idx]
else:
# Initialize a new group with unmatched keypoint
group = _init_group()
groups.append(group)
group.kpts[i] = locs_i[kpt_idx]
group.scores[i] = vals_i[kpt_idx]
group.tag_list.append(tags_i[kpt_idx])
groups = groups[:max_groups]
if groups:
grouped_keypoints = np.stack(
[np.r_['1', g.kpts, g.scores[:, None]] for g in groups])
else:
grouped_keypoints = np.empty((0, K, D + 1))
return grouped_keypoints
@KEYPOINT_CODECS.register_module()
class AssociativeEmbedding(BaseKeypointCodec):
"""Encode/decode keypoints with the method introduced in "Associative
Embedding". This is an asymmetric codec, where the keypoints are
represented as gaussian heatmaps and position indices during encoding, and
restored from predicted heatmaps and group tags.
See the paper `Associative Embedding: End-to-End Learning for Joint
Detection and Grouping`_ by Newell et al (2017) for details
Note:
- instance number: N
- keypoint number: K
- keypoint dimension: D
- embedding tag dimension: L
- image size: [w, h]
- heatmap size: [W, H]
Encoded:
- heatmaps (np.ndarray): The generated heatmap in shape (K, H, W)
where [W, H] is the `heatmap_size`
- keypoint_indices (np.ndarray): The keypoint position indices in shape
(N, K, 2). Each keypoint's index is [i, v], where i is the position
index in the heatmap (:math:`i=y*w+x`) and v is the visibility
- keypoint_weights (np.ndarray): The target weights in shape (N, K)
Args:
input_size (tuple): Image size in [w, h]
heatmap_size (tuple): Heatmap size in [W, H]
sigma (float): The sigma value of the Gaussian heatmap
use_udp (bool): Whether use unbiased data processing. See
`UDP (CVPR 2020)`_ for details. Defaults to ``False``
decode_keypoint_order (List[int]): The grouping order of the
keypoint indices. The groupping usually starts from a keypoints
around the head and torso, and gruadually moves out to the limbs
decode_keypoint_thr (float): The threshold of keypoint response value
in heatmaps. Defaults to 0.1
decode_tag_thr (float): The maximum allowed tag distance when matching
a keypoint to a group. A keypoint with larger tag distance to any
of the existing groups will initializes a new group. Defaults to
1.0
decode_nms_kernel (int): The kernel size of the NMS during decoding,
which should be an odd integer. Defaults to 5
decode_gaussian_kernel (int): The kernel size of the Gaussian blur
during decoding, which should be an odd integer. It is only used
when ``self.use_udp==True``. Defaults to 3
decode_topk (int): The number top-k candidates of each keypoints that
will be retrieved from the heatmaps during dedocding. Defaults to
20
decode_max_instances (int, optional): The maximum number of instances
to decode. ``None`` means no limitation to the instance number.
Defaults to ``None``
.. _`Associative Embedding: End-to-End Learning for Joint Detection and
Grouping`: https://arxiv.org/abs/1611.05424
.. _`UDP (CVPR 2020)`: https://arxiv.org/abs/1911.07524
"""
def __init__(
self,
input_size: Tuple[int, int],
heatmap_size: Tuple[int, int],
sigma: Optional[float] = None,
use_udp: bool = False,
decode_keypoint_order: List[int] = [],
decode_nms_kernel: int = 5,
decode_gaussian_kernel: int = 3,
decode_keypoint_thr: float = 0.1,
decode_tag_thr: float = 1.0,
decode_topk: int = 20,
decode_max_instances: Optional[int] = None,
) -> None:
super().__init__()
self.input_size = input_size
self.heatmap_size = heatmap_size
self.use_udp = use_udp
self.decode_nms_kernel = decode_nms_kernel
self.decode_gaussian_kernel = decode_gaussian_kernel
self.decode_keypoint_thr = decode_keypoint_thr
self.decode_tag_thr = decode_tag_thr
self.decode_topk = decode_topk
self.decode_max_instances = decode_max_instances
self.dedecode_keypoint_order = decode_keypoint_order.copy()
if self.use_udp:
self.scale_factor = ((np.array(input_size) - 1) /
(np.array(heatmap_size) - 1)).astype(
np.float32)
else:
self.scale_factor = (np.array(input_size) /
heatmap_size).astype(np.float32)
if sigma is None:
sigma = (heatmap_size[0] * heatmap_size[1])**0.5 / 64
self.sigma = sigma
def encode(
self,
keypoints: np.ndarray,
keypoints_visible: Optional[np.ndarray] = None
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""Encode keypoints into heatmaps and position indices. Note that the
original keypoint coordinates should be in the input image space.
Args:
keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D)
keypoints_visible (np.ndarray): Keypoint visibilities in shape
(N, K)
Returns:
dict:
- heatmaps (np.ndarray): The generated heatmap in shape
(K, H, W) where [W, H] is the `heatmap_size`
- keypoint_indices (np.ndarray): The keypoint position indices
in shape (N, K, 2). Each keypoint's index is [i, v], where i
is the position index in the heatmap (:math:`i=y*w+x`) and v
is the visibility
- keypoint_weights (np.ndarray): The target weights in shape
(N, K)
"""
if keypoints_visible is None:
keypoints_visible = np.ones(keypoints.shape[:2], dtype=np.float32)
# keypoint coordinates in heatmap
_keypoints = keypoints / self.scale_factor
if self.use_udp:
heatmaps, keypoint_weights = generate_udp_gaussian_heatmaps(
heatmap_size=self.heatmap_size,
keypoints=_keypoints,
keypoints_visible=keypoints_visible,
sigma=self.sigma)
else:
heatmaps, keypoint_weights = generate_gaussian_heatmaps(
heatmap_size=self.heatmap_size,
keypoints=_keypoints,
keypoints_visible=keypoints_visible,
sigma=self.sigma)
keypoint_indices = self._encode_keypoint_indices(
heatmap_size=self.heatmap_size,
keypoints=_keypoints,
keypoints_visible=keypoints_visible)
encoded = dict(
heatmaps=heatmaps,
keypoint_indices=keypoint_indices,
keypoint_weights=keypoint_weights)
return encoded
def _encode_keypoint_indices(self, heatmap_size: Tuple[int, int],
keypoints: np.ndarray,
keypoints_visible: np.ndarray) -> np.ndarray:
w, h = heatmap_size
N, K, _ = keypoints.shape
keypoint_indices = np.zeros((N, K, 2), dtype=np.int64)
for n, k in product(range(N), range(K)):
x, y = (keypoints[n, k] + 0.5).astype(np.int64)
index = y * w + x
vis = (keypoints_visible[n, k] > 0.5 and 0 <= x < w and 0 <= y < h)
keypoint_indices[n, k] = [index, vis]
return keypoint_indices
def decode(self, encoded: Any) -> Tuple[np.ndarray, np.ndarray]:
raise NotImplementedError()
def _get_batch_topk(self, batch_heatmaps: Tensor, batch_tags: Tensor,
k: int):
"""Get top-k response values from the heatmaps and corresponding tag
values from the tagging heatmaps.
Args:
batch_heatmaps (Tensor): Keypoint detection heatmaps in shape
(B, K, H, W)
batch_tags (Tensor): Tagging heatmaps in shape (B, C, H, W), where
the tag dim C is 2*K when using flip testing, or K otherwise
k (int): The number of top responses to get
Returns:
tuple:
- topk_vals (Tensor): Top-k response values of each heatmap in
shape (B, K, Topk)
- topk_tags (Tensor): The corresponding embedding tags of the
top-k responses, in shape (B, K, Topk, L)
- topk_locs (Tensor): The location of the top-k responses in each
heatmap, in shape (B, K, Topk, 2) where last dimension
represents x and y coordinates
"""
B, K, H, W = batch_heatmaps.shape
L = batch_tags.shape[1] // K
# shape of topk_val, top_indices: (B, K, TopK)
topk_vals, topk_indices = batch_heatmaps.flatten(-2, -1).topk(
k, dim=-1)
topk_tags_per_kpts = [
torch.gather(_tag, dim=2, index=topk_indices)
for _tag in torch.unbind(batch_tags.view(B, L, K, H * W), dim=1)
]
topk_tags = torch.stack(topk_tags_per_kpts, dim=-1) # (B, K, TopK, L)
topk_locs = torch.stack([topk_indices % W, topk_indices // W],
dim=-1) # (B, K, TopK, 2)
return topk_vals, topk_tags, topk_locs
def _group_keypoints(self, batch_vals: np.ndarray, batch_tags: np.ndarray,
batch_locs: np.ndarray):
"""Group keypoints into groups (each represents an instance) by tags.
Args:
batch_vals (Tensor): Heatmap response values of keypoint
candidates in shape (B, K, Topk)
batch_tags (Tensor): Tags of keypoint candidates in shape
(B, K, Topk, L)
batch_locs (Tensor): Locations of keypoint candidates in shape
(B, K, Topk, 2)
Returns:
List[np.ndarray]: Grouping results of a batch, each element is a
np.ndarray (in shape [N, K, D+1]) that contains the groups
detected in an image, including both keypoint coordinates and
scores.
"""
def _group_func(inputs: Tuple):
vals, tags, locs = inputs
return _group_keypoints_by_tags(
vals,
tags,
locs,
keypoint_order=self.dedecode_keypoint_order,
val_thr=self.decode_keypoint_thr,
tag_thr=self.decode_tag_thr,
max_groups=self.decode_max_instances)
_results = map(_group_func, zip(batch_vals, batch_tags, batch_locs))
results = list(_results)
return results
def _fill_missing_keypoints(self, keypoints: np.ndarray,
keypoint_scores: np.ndarray,
heatmaps: np.ndarray, tags: np.ndarray):
"""Fill the missing keypoints in the initial predictions.
Args:
keypoints (np.ndarray): Keypoint predictions in shape (N, K, D)
keypoint_scores (np.ndarray): Keypint score predictions in shape
(N, K), in which 0 means the corresponding keypoint is
missing in the initial prediction
heatmaps (np.ndarry): Heatmaps in shape (K, H, W)
tags (np.ndarray): Tagging heatmaps in shape (C, H, W) where
C=L*K
Returns:
tuple:
- keypoints (np.ndarray): Keypoint predictions with missing
ones filled
- keypoint_scores (np.ndarray): Keypoint score predictions with
missing ones filled
"""
N, K = keypoints.shape[:2]
H, W = heatmaps.shape[1:]
L = tags.shape[0] // K
keypoint_tags = [tags[k::K] for k in range(K)]
for n in range(N):
# Calculate the instance tag (mean tag of detected keypoints)
_tag = []
for k in range(K):
if keypoint_scores[n, k] > 0:
x, y = keypoints[n, k, :2].astype(np.int64)
x = np.clip(x, 0, W - 1)
y = np.clip(y, 0, H - 1)
_tag.append(keypoint_tags[k][:, y, x])
tag = np.mean(_tag, axis=0)
tag = tag.reshape(L, 1, 1)
# Search maximum response of the missing keypoints
for k in range(K):
if keypoint_scores[n, k] > 0:
continue
dist_map = np.linalg.norm(
keypoint_tags[k] - tag, ord=2, axis=0)
cost_map = np.round(dist_map) * 100 - heatmaps[k] # H, W
y, x = np.unravel_index(np.argmin(cost_map), shape=(H, W))
keypoints[n, k] = [x, y]
keypoint_scores[n, k] = heatmaps[k, y, x]
return keypoints, keypoint_scores
def batch_decode(self, batch_heatmaps: Tensor, batch_tags: Tensor
) -> Tuple[List[np.ndarray], List[np.ndarray]]:
"""Decode the keypoint coordinates from a batch of heatmaps and tagging
heatmaps. The decoded keypoint coordinates are in the input image
space.
Args:
batch_heatmaps (Tensor): Keypoint detection heatmaps in shape
(B, K, H, W)
batch_tags (Tensor): Tagging heatmaps in shape (B, C, H, W), where
:math:`C=L*K`
Returns:
tuple:
- batch_keypoints (List[np.ndarray]): Decoded keypoint coordinates
of the batch, each is in shape (N, K, D)
- batch_scores (List[np.ndarray]): Decoded keypoint scores of the
batch, each is in shape (N, K). It usually represents the
confidience of the keypoint prediction
"""
B, _, H, W = batch_heatmaps.shape
assert batch_tags.shape[0] == B and batch_tags.shape[2:4] == (H, W), (
f'Mismatched shapes of heatmap ({batch_heatmaps.shape}) and '
f'tagging map ({batch_tags.shape})')
# Heatmap NMS
batch_heatmaps = batch_heatmap_nms(batch_heatmaps,
self.decode_nms_kernel)
# Get top-k in each heatmap and and convert to numpy
batch_topk_vals, batch_topk_tags, batch_topk_locs = to_numpy(
self._get_batch_topk(
batch_heatmaps, batch_tags, k=self.decode_topk))
# Group keypoint candidates into groups (instances)
batch_groups = self._group_keypoints(batch_topk_vals, batch_topk_tags,
batch_topk_locs)
# Convert to numpy
batch_heatmaps_np = to_numpy(batch_heatmaps)
batch_tags_np = to_numpy(batch_tags)
# Refine the keypoint prediction
batch_keypoints = []
batch_keypoint_scores = []
for i, (groups, heatmaps, tags) in enumerate(
zip(batch_groups, batch_heatmaps_np, batch_tags_np)):
keypoints, scores = groups[..., :-1], groups[..., -1]
if keypoints.size > 0:
# identify missing keypoints
keypoints, scores = self._fill_missing_keypoints(
keypoints, scores, heatmaps, tags)
# refine keypoint coordinates according to heatmap distribution
if self.use_udp:
keypoints = refine_keypoints_dark_udp(
keypoints,
heatmaps,
blur_kernel_size=self.decode_gaussian_kernel)
else:
keypoints = refine_keypoints(keypoints, heatmaps)
batch_keypoints.append(keypoints)
batch_keypoint_scores.append(scores)
# restore keypoint scale
batch_keypoints = [
kpts * self.scale_factor for kpts in batch_keypoints
]
return batch_keypoints, batch_keypoint_scores
|