Spaces:
Runtime error
Runtime error
File size: 11,162 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
# Copyright (c) OpenMMLab. All rights reserved.
from itertools import product
from typing import Optional, Tuple, Union
import numpy as np
from mmpose.codecs.utils import get_simcc_maximum
from mmpose.codecs.utils.refinement import refine_simcc_dark
from mmpose.registry import KEYPOINT_CODECS
from .base import BaseKeypointCodec
@KEYPOINT_CODECS.register_module()
class SimCCLabel(BaseKeypointCodec):
r"""Generate keypoint representation via "SimCC" approach.
See the paper: `SimCC: a Simple Coordinate Classification Perspective for
Human Pose Estimation`_ by Li et al (2022) for more details.
Old name: SimDR
Note:
- instance number: N
- keypoint number: K
- keypoint dimension: D
- image size: [w, h]
Encoded:
- keypoint_x_labels (np.ndarray): The generated SimCC label for x-axis.
The label shape is (N, K, Wx) if ``smoothing_type=='gaussian'``
and (N, K) if `smoothing_type=='standard'``, where
:math:`Wx=w*simcc_split_ratio`
- keypoint_y_labels (np.ndarray): The generated SimCC label for y-axis.
The label shape is (N, K, Wy) if ``smoothing_type=='gaussian'``
and (N, K) if `smoothing_type=='standard'``, where
:math:`Wy=h*simcc_split_ratio`
- keypoint_weights (np.ndarray): The target weights in shape (N, K)
Args:
input_size (tuple): Input image size in [w, h]
smoothing_type (str): The SimCC label smoothing strategy. Options are
``'gaussian'`` and ``'standard'``. Defaults to ``'gaussian'``
sigma (float | int | tuple): The sigma value in the Gaussian SimCC
label. Defaults to 6.0
simcc_split_ratio (float): The ratio of the label size to the input
size. For example, if the input width is ``w``, the x label size
will be :math:`w*simcc_split_ratio`. Defaults to 2.0
label_smooth_weight (float): Label Smoothing weight. Defaults to 0.0
normalize (bool): Whether to normalize the heatmaps. Defaults to True.
.. _`SimCC: a Simple Coordinate Classification Perspective for Human Pose
Estimation`: https://arxiv.org/abs/2107.03332
"""
def __init__(self,
input_size: Tuple[int, int],
smoothing_type: str = 'gaussian',
sigma: Union[float, int, Tuple[float]] = 6.0,
simcc_split_ratio: float = 2.0,
label_smooth_weight: float = 0.0,
normalize: bool = True,
use_dark: bool = False) -> None:
super().__init__()
self.input_size = input_size
self.smoothing_type = smoothing_type
self.simcc_split_ratio = simcc_split_ratio
self.label_smooth_weight = label_smooth_weight
self.normalize = normalize
self.use_dark = use_dark
if isinstance(sigma, (float, int)):
self.sigma = np.array([sigma, sigma])
else:
self.sigma = np.array(sigma)
if self.smoothing_type not in {'gaussian', 'standard'}:
raise ValueError(
f'{self.__class__.__name__} got invalid `smoothing_type` value'
f'{self.smoothing_type}. Should be one of '
'{"gaussian", "standard"}')
if self.smoothing_type == 'gaussian' and self.label_smooth_weight > 0:
raise ValueError('Attribute `label_smooth_weight` is only '
'used for `standard` mode.')
if self.label_smooth_weight < 0.0 or self.label_smooth_weight > 1.0:
raise ValueError('`label_smooth_weight` should be in range [0, 1]')
def encode(self,
keypoints: np.ndarray,
keypoints_visible: Optional[np.ndarray] = None) -> dict:
"""Encoding keypoints into SimCC labels. Note that the original
keypoint coordinates should be in the input image space.
Args:
keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D)
keypoints_visible (np.ndarray): Keypoint visibilities in shape
(N, K)
Returns:
dict:
- keypoint_x_labels (np.ndarray): The generated SimCC label for
x-axis.
The label shape is (N, K, Wx) if ``smoothing_type=='gaussian'``
and (N, K) if `smoothing_type=='standard'``, where
:math:`Wx=w*simcc_split_ratio`
- keypoint_y_labels (np.ndarray): The generated SimCC label for
y-axis.
The label shape is (N, K, Wy) if ``smoothing_type=='gaussian'``
and (N, K) if `smoothing_type=='standard'``, where
:math:`Wy=h*simcc_split_ratio`
- keypoint_weights (np.ndarray): The target weights in shape
(N, K)
"""
if keypoints_visible is None:
keypoints_visible = np.ones(keypoints.shape[:2], dtype=np.float32)
if self.smoothing_type == 'gaussian':
x_labels, y_labels, keypoint_weights = self._generate_gaussian(
keypoints, keypoints_visible)
elif self.smoothing_type == 'standard':
x_labels, y_labels, keypoint_weights = self._generate_standard(
keypoints, keypoints_visible)
else:
raise ValueError(
f'{self.__class__.__name__} got invalid `smoothing_type` value'
f'{self.smoothing_type}. Should be one of '
'{"gaussian", "standard"}')
encoded = dict(
keypoint_x_labels=x_labels,
keypoint_y_labels=y_labels,
keypoint_weights=keypoint_weights)
return encoded
def decode(self, simcc_x: np.ndarray,
simcc_y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Decode keypoint coordinates from SimCC representations. The decoded
coordinates are in the input image space.
Args:
encoded (Tuple[np.ndarray, np.ndarray]): SimCC labels for x-axis
and y-axis
simcc_x (np.ndarray): SimCC label for x-axis
simcc_y (np.ndarray): SimCC label for y-axis
Returns:
tuple:
- keypoints (np.ndarray): Decoded coordinates in shape (N, K, D)
- socres (np.ndarray): The keypoint scores in shape (N, K).
It usually represents the confidence of the keypoint prediction
"""
keypoints, scores = get_simcc_maximum(simcc_x, simcc_y)
# Unsqueeze the instance dimension for single-instance results
if keypoints.ndim == 2:
keypoints = keypoints[None, :]
scores = scores[None, :]
if self.use_dark:
x_blur = int((self.sigma[0] * 20 - 7) // 3)
y_blur = int((self.sigma[1] * 20 - 7) // 3)
x_blur -= int((x_blur % 2) == 0)
y_blur -= int((y_blur % 2) == 0)
keypoints[:, :, 0] = refine_simcc_dark(keypoints[:, :, 0], simcc_x,
x_blur)
keypoints[:, :, 1] = refine_simcc_dark(keypoints[:, :, 1], simcc_y,
y_blur)
keypoints /= self.simcc_split_ratio
return keypoints, scores
def _map_coordinates(
self,
keypoints: np.ndarray,
keypoints_visible: Optional[np.ndarray] = None
) -> Tuple[np.ndarray, np.ndarray]:
"""Mapping keypoint coordinates into SimCC space."""
keypoints_split = keypoints.copy()
keypoints_split = np.around(keypoints_split * self.simcc_split_ratio)
keypoints_split = keypoints_split.astype(np.int64)
keypoint_weights = keypoints_visible.copy()
return keypoints_split, keypoint_weights
def _generate_standard(
self,
keypoints: np.ndarray,
keypoints_visible: Optional[np.ndarray] = None
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""Encoding keypoints into SimCC labels with Standard Label Smoothing
strategy.
Labels will be one-hot vectors if self.label_smooth_weight==0.0
"""
N, K, _ = keypoints.shape
w, h = self.input_size
W = np.around(w * self.simcc_split_ratio).astype(int)
H = np.around(h * self.simcc_split_ratio).astype(int)
keypoints_split, keypoint_weights = self._map_coordinates(
keypoints, keypoints_visible)
target_x = np.zeros((N, K, W), dtype=np.float32)
target_y = np.zeros((N, K, H), dtype=np.float32)
for n, k in product(range(N), range(K)):
# skip unlabled keypoints
if keypoints_visible[n, k] < 0.5:
continue
# get center coordinates
mu_x, mu_y = keypoints_split[n, k].astype(np.int64)
# detect abnormal coords and assign the weight 0
if mu_x >= W or mu_y >= H or mu_x < 0 or mu_y < 0:
keypoint_weights[n, k] = 0
continue
if self.label_smooth_weight > 0:
target_x[n, k] = self.label_smooth_weight / (W - 1)
target_y[n, k] = self.label_smooth_weight / (H - 1)
target_x[n, k, mu_x] = 1.0 - self.label_smooth_weight
target_y[n, k, mu_y] = 1.0 - self.label_smooth_weight
return target_x, target_y, keypoint_weights
def _generate_gaussian(
self,
keypoints: np.ndarray,
keypoints_visible: Optional[np.ndarray] = None
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""Encoding keypoints into SimCC labels with Gaussian Label Smoothing
strategy."""
N, K, _ = keypoints.shape
w, h = self.input_size
W = np.around(w * self.simcc_split_ratio).astype(int)
H = np.around(h * self.simcc_split_ratio).astype(int)
keypoints_split, keypoint_weights = self._map_coordinates(
keypoints, keypoints_visible)
target_x = np.zeros((N, K, W), dtype=np.float32)
target_y = np.zeros((N, K, H), dtype=np.float32)
# 3-sigma rule
radius = self.sigma * 3
# xy grid
x = np.arange(0, W, 1, dtype=np.float32)
y = np.arange(0, H, 1, dtype=np.float32)
for n, k in product(range(N), range(K)):
# skip unlabled keypoints
if keypoints_visible[n, k] < 0.5:
continue
mu = keypoints_split[n, k]
# check that the gaussian has in-bounds part
left, top = mu - radius
right, bottom = mu + radius + 1
if left >= W or top >= H or right < 0 or bottom < 0:
keypoint_weights[n, k] = 0
continue
mu_x, mu_y = mu
target_x[n, k] = np.exp(-((x - mu_x)**2) / (2 * self.sigma[0]**2))
target_y[n, k] = np.exp(-((y - mu_y)**2) / (2 * self.sigma[1]**2))
if self.normalize:
norm_value = self.sigma * np.sqrt(np.pi * 2)
target_x /= norm_value[0]
target_y /= norm_value[1]
return target_x, target_y, keypoint_weights
|