File size: 37,120 Bytes
cc0dd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from copy import deepcopy
from typing import Dict, List, Optional, Sequence, Tuple, Union

import mmcv
import mmengine
import numpy as np
from mmcv.image import imflip
from mmcv.transforms import BaseTransform
from mmcv.transforms.utils import avoid_cache_randomness, cache_randomness
from mmengine import is_list_of
from mmengine.dist import get_dist_info
from scipy.stats import truncnorm

from mmpose.codecs import *  # noqa: F401, F403
from mmpose.registry import KEYPOINT_CODECS, TRANSFORMS
from mmpose.structures.bbox import bbox_xyxy2cs, flip_bbox
from mmpose.structures.keypoint import flip_keypoints
from mmpose.utils.typing import MultiConfig

try:
    import albumentations
except ImportError:
    albumentations = None

Number = Union[int, float]


@TRANSFORMS.register_module()
class GetBBoxCenterScale(BaseTransform):
    """Convert bboxes from [x, y, w, h] to center and scale.

    The center is the coordinates of the bbox center, and the scale is the
    bbox width and height normalized by a scale factor.

    Required Keys:

        - bbox

    Added Keys:

        - bbox_center
        - bbox_scale

    Args:
        padding (float): The bbox padding scale that will be multilied to
            `bbox_scale`. Defaults to 1.25
    """

    def __init__(self, padding: float = 1.25) -> None:
        super().__init__()

        self.padding = padding

    def transform(self, results: Dict) -> Optional[dict]:
        """The transform function of :class:`GetBBoxCenterScale`.

        See ``transform()`` method of :class:`BaseTransform` for details.

        Args:
            results (dict): The result dict

        Returns:
            dict: The result dict.
        """
        if 'bbox_center' in results and 'bbox_scale' in results:
            rank, _ = get_dist_info()
            if rank == 0:
                warnings.warn('Use the existing "bbox_center" and "bbox_scale"'
                              '. The padding will still be applied.')
            results['bbox_scale'] *= self.padding

        else:
            bbox = results['bbox']
            center, scale = bbox_xyxy2cs(bbox, padding=self.padding)

            results['bbox_center'] = center
            results['bbox_scale'] = scale

        return results

    def __repr__(self) -> str:
        """print the basic information of the transform.

        Returns:
            str: Formatted string.
        """
        repr_str = self.__class__.__name__ + f'(padding={self.padding})'
        return repr_str


@TRANSFORMS.register_module()
class RandomFlip(BaseTransform):
    """Randomly flip the image, bbox and keypoints.

    Required Keys:

        - img
        - img_shape
        - flip_indices
        - input_size (optional)
        - bbox (optional)
        - bbox_center (optional)
        - keypoints (optional)
        - keypoints_visible (optional)
        - img_mask (optional)

    Modified Keys:

        - img
        - bbox (optional)
        - bbox_center (optional)
        - keypoints (optional)
        - keypoints_visible (optional)
        - img_mask (optional)

    Added Keys:

        - flip
        - flip_direction

    Args:
        prob (float | list[float]): The flipping probability. If a list is
            given, the argument `direction` should be a list with the same
            length. And each element in `prob` indicates the flipping
            probability of the corresponding one in ``direction``. Defaults
            to 0.5
        direction (str | list[str]): The flipping direction. Options are
            ``'horizontal'``, ``'vertical'`` and ``'diagonal'``. If a list is
            is given, each data sample's flipping direction will be sampled
            from a distribution determined by the argument ``prob``. Defaults
            to ``'horizontal'``.
    """

    def __init__(self,
                 prob: Union[float, List[float]] = 0.5,
                 direction: Union[str, List[str]] = 'horizontal') -> None:
        if isinstance(prob, list):
            assert is_list_of(prob, float)
            assert 0 <= sum(prob) <= 1
        elif isinstance(prob, float):
            assert 0 <= prob <= 1
        else:
            raise ValueError(f'probs must be float or list of float, but \
                              got `{type(prob)}`.')
        self.prob = prob

        valid_directions = ['horizontal', 'vertical', 'diagonal']
        if isinstance(direction, str):
            assert direction in valid_directions
        elif isinstance(direction, list):
            assert is_list_of(direction, str)
            assert set(direction).issubset(set(valid_directions))
        else:
            raise ValueError(f'direction must be either str or list of str, \
                               but got `{type(direction)}`.')
        self.direction = direction

        if isinstance(prob, list):
            assert len(prob) == len(self.direction)

    @cache_randomness
    def _choose_direction(self) -> str:
        """Choose the flip direction according to `prob` and `direction`"""
        if isinstance(self.direction,
                      List) and not isinstance(self.direction, str):
            # None means non-flip
            direction_list: list = list(self.direction) + [None]
        elif isinstance(self.direction, str):
            # None means non-flip
            direction_list = [self.direction, None]

        if isinstance(self.prob, list):
            non_prob: float = 1 - sum(self.prob)
            prob_list = self.prob + [non_prob]
        elif isinstance(self.prob, float):
            non_prob = 1. - self.prob
            # exclude non-flip
            single_ratio = self.prob / (len(direction_list) - 1)
            prob_list = [single_ratio] * (len(direction_list) - 1) + [non_prob]

        cur_dir = np.random.choice(direction_list, p=prob_list)

        return cur_dir

    def transform(self, results: dict) -> dict:
        """The transform function of :class:`RandomFlip`.

        See ``transform()`` method of :class:`BaseTransform` for details.

        Args:
            results (dict): The result dict

        Returns:
            dict: The result dict.
        """

        flip_dir = self._choose_direction()

        if flip_dir is None:
            results['flip'] = False
            results['flip_direction'] = None
        else:
            results['flip'] = True
            results['flip_direction'] = flip_dir

            h, w = results.get('input_size', results['img_shape'])
            # flip image and mask
            if isinstance(results['img'], list):
                results['img'] = [
                    imflip(img, direction=flip_dir) for img in results['img']
                ]
            else:
                results['img'] = imflip(results['img'], direction=flip_dir)

            if 'img_mask' in results:
                results['img_mask'] = imflip(
                    results['img_mask'], direction=flip_dir)

            # flip bboxes
            if results.get('bbox', None) is not None:
                results['bbox'] = flip_bbox(
                    results['bbox'],
                    image_size=(w, h),
                    bbox_format='xyxy',
                    direction=flip_dir)

            if results.get('bbox_center', None) is not None:
                results['bbox_center'] = flip_bbox(
                    results['bbox_center'],
                    image_size=(w, h),
                    bbox_format='center',
                    direction=flip_dir)

            # flip keypoints
            if results.get('keypoints', None) is not None:
                keypoints, keypoints_visible = flip_keypoints(
                    results['keypoints'],
                    results.get('keypoints_visible', None),
                    image_size=(w, h),
                    flip_indices=results['flip_indices'],
                    direction=flip_dir)

                results['keypoints'] = keypoints
                results['keypoints_visible'] = keypoints_visible

        return results

    def __repr__(self) -> str:
        """print the basic information of the transform.

        Returns:
            str: Formatted string.
        """
        repr_str = self.__class__.__name__
        repr_str += f'(prob={self.prob}, '
        repr_str += f'direction={self.direction})'
        return repr_str


@TRANSFORMS.register_module()
class RandomHalfBody(BaseTransform):
    """Data augmentation with half-body transform that keeps only the upper or
    lower body at random.

    Required Keys:

        - keypoints
        - keypoints_visible
        - upper_body_ids
        - lower_body_ids

    Modified Keys:

        - bbox
        - bbox_center
        - bbox_scale

    Args:
        min_total_keypoints (int): The minimum required number of total valid
            keypoints of a person to apply half-body transform. Defaults to 8
        min_half_keypoints (int): The minimum required number of valid
            half-body keypoints of a person to apply half-body transform.
            Defaults to 2
        padding (float): The bbox padding scale that will be multilied to
            `bbox_scale`. Defaults to 1.5
        prob (float): The probability to apply half-body transform when the
            keypoint number meets the requirement. Defaults to 0.3
    """

    def __init__(self,
                 min_total_keypoints: int = 9,
                 min_upper_keypoints: int = 2,
                 min_lower_keypoints: int = 3,
                 padding: float = 1.5,
                 prob: float = 0.3,
                 upper_prioritized_prob: float = 0.7) -> None:
        super().__init__()
        self.min_total_keypoints = min_total_keypoints
        self.min_upper_keypoints = min_upper_keypoints
        self.min_lower_keypoints = min_lower_keypoints
        self.padding = padding
        self.prob = prob
        self.upper_prioritized_prob = upper_prioritized_prob

    def _get_half_body_bbox(self, keypoints: np.ndarray,
                            half_body_ids: List[int]
                            ) -> Tuple[np.ndarray, np.ndarray]:
        """Get half-body bbox center and scale of a single instance.

        Args:
            keypoints (np.ndarray): Keypoints in shape (K, D)
            upper_body_ids (list): The list of half-body keypont indices

        Returns:
            tuple: A tuple containing half-body bbox center and scale
            - center: Center (x, y) of the bbox
            - scale: Scale (w, h) of the bbox
        """

        selected_keypoints = keypoints[half_body_ids]
        center = selected_keypoints.mean(axis=0)[:2]

        x1, y1 = selected_keypoints.min(axis=0)
        x2, y2 = selected_keypoints.max(axis=0)
        w = x2 - x1
        h = y2 - y1
        scale = np.array([w, h], dtype=center.dtype) * self.padding

        return center, scale

    @cache_randomness
    def _random_select_half_body(self, keypoints_visible: np.ndarray,
                                 upper_body_ids: List[int],
                                 lower_body_ids: List[int]
                                 ) -> List[Optional[List[int]]]:
        """Randomly determine whether applying half-body transform and get the
        half-body keyponit indices of each instances.

        Args:
            keypoints_visible (np.ndarray, optional): The visibility of
                keypoints in shape (N, K, 1).
            upper_body_ids (list): The list of upper body keypoint indices
            lower_body_ids (list): The list of lower body keypoint indices

        Returns:
            list[list[int] | None]: The selected half-body keypoint indices
            of each instance. ``None`` means not applying half-body transform.
        """

        half_body_ids = []

        for visible in keypoints_visible:
            if visible.sum() < self.min_total_keypoints:
                indices = None
            elif np.random.rand() > self.prob:
                indices = None
            else:
                upper_valid_ids = [i for i in upper_body_ids if visible[i] > 0]
                lower_valid_ids = [i for i in lower_body_ids if visible[i] > 0]

                num_upper = len(upper_valid_ids)
                num_lower = len(lower_valid_ids)

                prefer_upper = np.random.rand() < self.upper_prioritized_prob
                if (num_upper < self.min_upper_keypoints
                        and num_lower < self.min_lower_keypoints):
                    indices = None
                elif num_lower < self.min_lower_keypoints:
                    indices = upper_valid_ids
                elif num_upper < self.min_upper_keypoints:
                    indices = lower_valid_ids
                else:
                    indices = (
                        upper_valid_ids if prefer_upper else lower_valid_ids)

            half_body_ids.append(indices)

        return half_body_ids

    def transform(self, results: Dict) -> Optional[dict]:
        """The transform function of :class:`HalfBodyTransform`.

        See ``transform()`` method of :class:`BaseTransform` for details.

        Args:
            results (dict): The result dict

        Returns:
            dict: The result dict.
        """

        half_body_ids = self._random_select_half_body(
            keypoints_visible=results['keypoints_visible'],
            upper_body_ids=results['upper_body_ids'],
            lower_body_ids=results['lower_body_ids'])

        bbox_center = []
        bbox_scale = []

        for i, indices in enumerate(half_body_ids):
            if indices is None:
                bbox_center.append(results['bbox_center'][i])
                bbox_scale.append(results['bbox_scale'][i])
            else:
                _center, _scale = self._get_half_body_bbox(
                    results['keypoints'][i], indices)
                bbox_center.append(_center)
                bbox_scale.append(_scale)

        results['bbox_center'] = np.stack(bbox_center)
        results['bbox_scale'] = np.stack(bbox_scale)
        return results

    def __repr__(self) -> str:
        """print the basic information of the transform.

        Returns:
            str: Formatted string.
        """
        repr_str = self.__class__.__name__
        repr_str += f'(min_total_keypoints={self.min_total_keypoints}, '
        repr_str += f'min_upper_keypoints={self.min_upper_keypoints}, '
        repr_str += f'min_lower_keypoints={self.min_lower_keypoints}, '
        repr_str += f'padding={self.padding}, '
        repr_str += f'prob={self.prob}, '
        repr_str += f'upper_prioritized_prob={self.upper_prioritized_prob})'
        return repr_str


@TRANSFORMS.register_module()
class RandomBBoxTransform(BaseTransform):
    r"""Rnadomly shift, resize and rotate the bounding boxes.

    Required Keys:

        - bbox_center
        - bbox_scale

    Modified Keys:

        - bbox_center
        - bbox_scale

    Added Keys:
        - bbox_rotation

    Args:
        shift_factor (float): Randomly shift the bbox in range
            :math:`[-dx, dx]` and :math:`[-dy, dy]` in X and Y directions,
            where :math:`dx(y) = x(y)_scale \cdot shift_factor` in pixels.
            Defaults to 0.16
        shift_prob (float): Probability of applying random shift. Defaults to
            0.3
        scale_factor (Tuple[float, float]): Randomly resize the bbox in range
            :math:`[scale_factor[0], scale_factor[1]]`. Defaults to (0.5, 1.5)
        scale_prob (float): Probability of applying random resizing. Defaults
            to 1.0
        rotate_factor (float): Randomly rotate the bbox in
            :math:`[-rotate_factor, rotate_factor]` in degrees. Defaults
            to 80.0
        rotate_prob (float): Probability of applying random rotation. Defaults
            to 0.6
    """

    def __init__(self,
                 shift_factor: float = 0.16,
                 shift_prob: float = 0.3,
                 scale_factor: Tuple[float, float] = (0.5, 1.5),
                 scale_prob: float = 1.0,
                 rotate_factor: float = 80.0,
                 rotate_prob: float = 0.6) -> None:
        super().__init__()

        self.shift_factor = shift_factor
        self.shift_prob = shift_prob
        self.scale_factor = scale_factor
        self.scale_prob = scale_prob
        self.rotate_factor = rotate_factor
        self.rotate_prob = rotate_prob

    @staticmethod
    def _truncnorm(low: float = -1.,
                   high: float = 1.,
                   size: tuple = ()) -> np.ndarray:
        """Sample from a truncated normal distribution."""
        return truncnorm.rvs(low, high, size=size).astype(np.float32)

    @cache_randomness
    def _get_transform_params(self, num_bboxes: int) -> Tuple:
        """Get random transform parameters.

        Args:
            num_bboxes (int): The number of bboxes

        Returns:
            tuple:
            - offset (np.ndarray): Offset factor of each bbox in shape (n, 2)
            - scale (np.ndarray): Scaling factor of each bbox in shape (n, 1)
            - rotate (np.ndarray): Rotation degree of each bbox in shape (n,)
        """
        # Get shift parameters
        offset = self._truncnorm(size=(num_bboxes, 2)) * self.shift_factor
        offset = np.where(
            np.random.rand(num_bboxes, 1) < self.shift_prob, offset, 0.)

        # Get scaling parameters
        scale_min, scale_max = self.scale_factor
        mu = (scale_max + scale_min) * 0.5
        sigma = (scale_max - scale_min) * 0.5
        scale = self._truncnorm(size=(num_bboxes, 1)) * sigma + mu
        scale = np.where(
            np.random.rand(num_bboxes, 1) < self.scale_prob, scale, 1.)

        # Get rotation parameters
        rotate = self._truncnorm(size=(num_bboxes, )) * self.rotate_factor
        rotate = np.where(
            np.random.rand(num_bboxes) < self.rotate_prob, rotate, 0.)

        return offset, scale, rotate

    def transform(self, results: Dict) -> Optional[dict]:
        """The transform function of :class:`RandomBboxTransform`.

        See ``transform()`` method of :class:`BaseTransform` for details.

        Args:
            results (dict): The result dict

        Returns:
            dict: The result dict.
        """
        bbox_scale = results['bbox_scale']
        num_bboxes = bbox_scale.shape[0]

        offset, scale, rotate = self._get_transform_params(num_bboxes)

        results['bbox_center'] += offset * bbox_scale
        results['bbox_scale'] *= scale
        results['bbox_rotation'] = rotate

        return results

    def __repr__(self) -> str:
        """print the basic information of the transform.

        Returns:
            str: Formatted string.
        """
        repr_str = self.__class__.__name__
        repr_str += f'(shift_prob={self.shift_prob}, '
        repr_str += f'shift_factor={self.shift_factor}, '
        repr_str += f'scale_prob={self.scale_prob}, '
        repr_str += f'scale_factor={self.scale_factor}, '
        repr_str += f'rotate_prob={self.rotate_prob}, '
        repr_str += f'rotate_factor={self.rotate_factor})'
        return repr_str


@TRANSFORMS.register_module()
@avoid_cache_randomness
class Albumentation(BaseTransform):
    """Albumentation augmentation (pixel-level transforms only).

    Adds custom pixel-level transformations from Albumentations library.
    Please visit `https://albumentations.ai/docs/`
    to get more information.

    Note: we only support pixel-level transforms.
    Please visit `https://github.com/albumentations-team/`
    `albumentations#pixel-level-transforms`
    to get more information about pixel-level transforms.

    Required Keys:

    - img

    Modified Keys:

    - img

    Args:
        transforms (List[dict]): A list of Albumentation transforms.
            An example of ``transforms`` is as followed:
            .. code-block:: python

                [
                    dict(
                        type='RandomBrightnessContrast',
                        brightness_limit=[0.1, 0.3],
                        contrast_limit=[0.1, 0.3],
                        p=0.2),
                    dict(type='ChannelShuffle', p=0.1),
                    dict(
                        type='OneOf',
                        transforms=[
                            dict(type='Blur', blur_limit=3, p=1.0),
                            dict(type='MedianBlur', blur_limit=3, p=1.0)
                        ],
                        p=0.1),
                ]
        keymap (dict | None): key mapping from ``input key`` to
            ``albumentation-style key``.
            Defaults to None, which will use {'img': 'image'}.
    """

    def __init__(self,
                 transforms: List[dict],
                 keymap: Optional[dict] = None) -> None:
        if albumentations is None:
            raise RuntimeError('albumentations is not installed')

        self.transforms = transforms

        self.aug = albumentations.Compose(
            [self.albu_builder(t) for t in self.transforms])

        if not keymap:
            self.keymap_to_albu = {
                'img': 'image',
            }
        else:
            self.keymap_to_albu = keymap

    def albu_builder(self, cfg: dict) -> albumentations:
        """Import a module from albumentations.

        It resembles some of :func:`build_from_cfg` logic.

        Args:
            cfg (dict): Config dict. It should at least contain the key "type".

        Returns:
            albumentations.BasicTransform: The constructed transform object
        """

        assert isinstance(cfg, dict) and 'type' in cfg
        args = cfg.copy()

        obj_type = args.pop('type')
        if mmengine.is_str(obj_type):
            if albumentations is None:
                raise RuntimeError('albumentations is not installed')
            rank, _ = get_dist_info()
            if rank == 0 and not hasattr(
                    albumentations.augmentations.transforms, obj_type):
                warnings.warn(
                    f'{obj_type} is not pixel-level transformations. '
                    'Please use with caution.')
            obj_cls = getattr(albumentations, obj_type)
        else:
            raise TypeError(f'type must be a str, but got {type(obj_type)}')

        if 'transforms' in args:
            args['transforms'] = [
                self.albu_builder(transform)
                for transform in args['transforms']
            ]

        return obj_cls(**args)

    def transform(self, results: dict) -> dict:
        """The transform function of :class:`Albumentation` to apply
        albumentations transforms.

        See ``transform()`` method of :class:`BaseTransform` for details.

        Args:
            results (dict): Result dict from the data pipeline.

        Return:
            dict: updated result dict.
        """
        # map result dict to albumentations format
        results_albu = {}
        for k, v in self.keymap_to_albu.items():
            assert k in results, \
                f'The `{k}` is required to perform albumentations transforms'
            results_albu[v] = results[k]

        # Apply albumentations transforms
        results_albu = self.aug(**results_albu)

        # map the albu results back to the original format
        for k, v in self.keymap_to_albu.items():
            results[k] = results_albu[v]

        return results

    def __repr__(self) -> str:
        """print the basic information of the transform.

        Returns:
            str: Formatted string.
        """
        repr_str = self.__class__.__name__ + f'(transforms={self.transforms})'
        return repr_str


@TRANSFORMS.register_module()
class PhotometricDistortion(BaseTransform):
    """Apply photometric distortion to image sequentially, every transformation
    is applied with a probability of 0.5. The position of random contrast is in
    second or second to last.

    1. random brightness
    2. random contrast (mode 0)
    3. convert color from BGR to HSV
    4. random saturation
    5. random hue
    6. convert color from HSV to BGR
    7. random contrast (mode 1)
    8. randomly swap channels

    Required Keys:

    - img

    Modified Keys:

    - img

    Args:
        brightness_delta (int): delta of brightness.
        contrast_range (tuple): range of contrast.
        saturation_range (tuple): range of saturation.
        hue_delta (int): delta of hue.
    """

    def __init__(self,
                 brightness_delta: int = 32,
                 contrast_range: Sequence[Number] = (0.5, 1.5),
                 saturation_range: Sequence[Number] = (0.5, 1.5),
                 hue_delta: int = 18) -> None:
        self.brightness_delta = brightness_delta
        self.contrast_lower, self.contrast_upper = contrast_range
        self.saturation_lower, self.saturation_upper = saturation_range
        self.hue_delta = hue_delta

    @cache_randomness
    def _random_flags(self) -> Sequence[Number]:
        """Generate the random flags for subsequent transforms.

        Returns:
            Sequence[Number]: a sequence of numbers that indicate whether to
                do the corresponding transforms.
        """
        # contrast_mode == 0 --> do random contrast first
        # contrast_mode == 1 --> do random contrast last
        contrast_mode = np.random.randint(2)
        # whether to apply brightness distortion
        brightness_flag = np.random.randint(2)
        # whether to apply contrast distortion
        contrast_flag = np.random.randint(2)
        # the mode to convert color from BGR to HSV
        hsv_mode = np.random.randint(4)
        # whether to apply channel swap
        swap_flag = np.random.randint(2)

        # the beta in `self._convert` to be added to image array
        # in brightness distortion
        brightness_beta = np.random.uniform(-self.brightness_delta,
                                            self.brightness_delta)
        # the alpha in `self._convert` to be multiplied to image array
        # in contrast distortion
        contrast_alpha = np.random.uniform(self.contrast_lower,
                                           self.contrast_upper)
        # the alpha in `self._convert` to be multiplied to image array
        # in saturation distortion to hsv-formatted img
        saturation_alpha = np.random.uniform(self.saturation_lower,
                                             self.saturation_upper)
        # delta of hue to add to image array in hue distortion
        hue_delta = np.random.randint(-self.hue_delta, self.hue_delta)
        # the random permutation of channel order
        swap_channel_order = np.random.permutation(3)

        return (contrast_mode, brightness_flag, contrast_flag, hsv_mode,
                swap_flag, brightness_beta, contrast_alpha, saturation_alpha,
                hue_delta, swap_channel_order)

    def _convert(self,
                 img: np.ndarray,
                 alpha: float = 1,
                 beta: float = 0) -> np.ndarray:
        """Multiple with alpha and add beta with clip.

        Args:
            img (np.ndarray): The image array.
            alpha (float): The random multiplier.
            beta (float): The random offset.

        Returns:
            np.ndarray: The updated image array.
        """
        img = img.astype(np.float32) * alpha + beta
        img = np.clip(img, 0, 255)
        return img.astype(np.uint8)

    def transform(self, results: dict) -> dict:
        """The transform function of :class:`PhotometricDistortion` to perform
        photometric distortion on images.

        See ``transform()`` method of :class:`BaseTransform` for details.


        Args:
            results (dict): Result dict from the data pipeline.

        Returns:
            dict: Result dict with images distorted.
        """

        assert 'img' in results, '`img` is not found in results'
        img = results['img']

        (contrast_mode, brightness_flag, contrast_flag, hsv_mode, swap_flag,
         brightness_beta, contrast_alpha, saturation_alpha, hue_delta,
         swap_channel_order) = self._random_flags()

        # random brightness distortion
        if brightness_flag:
            img = self._convert(img, beta=brightness_beta)

        # contrast_mode == 0 --> do random contrast first
        # contrast_mode == 1 --> do random contrast last
        if contrast_mode == 1:
            if contrast_flag:
                img = self._convert(img, alpha=contrast_alpha)

        if hsv_mode:
            # random saturation/hue distortion
            img = mmcv.bgr2hsv(img)
            if hsv_mode == 1 or hsv_mode == 3:
                # apply saturation distortion to hsv-formatted img
                img[:, :, 1] = self._convert(
                    img[:, :, 1], alpha=saturation_alpha)
            if hsv_mode == 2 or hsv_mode == 3:
                # apply hue distortion to hsv-formatted img
                img[:, :, 0] = img[:, :, 0].astype(int) + hue_delta
            img = mmcv.hsv2bgr(img)

        if contrast_mode == 1:
            if contrast_flag:
                img = self._convert(img, alpha=contrast_alpha)

        # randomly swap channels
        if swap_flag:
            img = img[..., swap_channel_order]

        results['img'] = img
        return results

    def __repr__(self) -> str:
        """print the basic information of the transform.

        Returns:
            str: Formatted string.
        """
        repr_str = self.__class__.__name__
        repr_str += (f'(brightness_delta={self.brightness_delta}, '
                     f'contrast_range=({self.contrast_lower}, '
                     f'{self.contrast_upper}), '
                     f'saturation_range=({self.saturation_lower}, '
                     f'{self.saturation_upper}), '
                     f'hue_delta={self.hue_delta})')
        return repr_str


@TRANSFORMS.register_module()
class GenerateTarget(BaseTransform):
    """Encode keypoints into Target.

    The generated target is usually the supervision signal of the model
    learning, e.g. heatmaps or regression labels.

    Required Keys:

        - keypoints
        - keypoints_visible
        - dataset_keypoint_weights

    Added Keys:

        - The keys of the encoded items from the codec will be updated into
            the results, e.g. ``'heatmaps'`` or ``'keypoint_weights'``. See
            the specific codec for more details.

    Args:
        encoder (dict | list[dict]): The codec config for keypoint encoding.
            Both single encoder and multiple encoders (given as a list) are
            supported
        multilevel (bool): Determine the method to handle multiple encoders.
            If ``multilevel==True``, generate multilevel targets from a group
            of encoders of the same type (e.g. multiple :class:`MSRAHeatmap`
            encoders with different sigma values); If ``multilevel==False``,
            generate combined targets from a group of different encoders. This
            argument will have no effect in case of single encoder. Defaults
            to ``False``
        use_dataset_keypoint_weights (bool): Whether use the keypoint weights
            from the dataset meta information. Defaults to ``False``
        target_type (str, deprecated): This argument is deprecated and has no
            effect. Defaults to ``None``
    """

    def __init__(self,
                 encoder: MultiConfig,
                 target_type: Optional[str] = None,
                 multilevel: bool = False,
                 use_dataset_keypoint_weights: bool = False) -> None:
        super().__init__()

        if target_type is not None:
            rank, _ = get_dist_info()
            if rank == 0:
                warnings.warn(
                    'The argument `target_type` is deprecated in'
                    ' GenerateTarget. The target type and encoded '
                    'keys will be determined by encoder(s).',
                    DeprecationWarning)

        self.encoder_cfg = deepcopy(encoder)
        self.multilevel = multilevel
        self.use_dataset_keypoint_weights = use_dataset_keypoint_weights

        if isinstance(self.encoder_cfg, list):
            self.encoder = [
                KEYPOINT_CODECS.build(cfg) for cfg in self.encoder_cfg
            ]
        else:
            assert not self.multilevel, (
                'Need multiple encoder configs if ``multilevel==True``')
            self.encoder = KEYPOINT_CODECS.build(self.encoder_cfg)

    def transform(self, results: Dict) -> Optional[dict]:
        """The transform function of :class:`GenerateTarget`.

        See ``transform()`` method of :class:`BaseTransform` for details.
        """

        if results.get('transformed_keypoints', None) is not None:
            # use keypoints transformed by TopdownAffine
            keypoints = results['transformed_keypoints']
        elif results.get('keypoints', None) is not None:
            # use original keypoints
            keypoints = results['keypoints']
        else:
            raise ValueError(
                'GenerateTarget requires \'transformed_keypoints\' or'
                ' \'keypoints\' in the results.')

        keypoints_visible = results['keypoints_visible']

        # Encoded items from the encoder(s) will be updated into the results.
        # Please refer to the document of the specific codec for details about
        # encoded items.
        if not isinstance(self.encoder, list):
            # For single encoding, the encoded items will be directly added
            # into results.
            auxiliary_encode_kwargs = {
                key: results[key]
                for key in self.encoder.auxiliary_encode_keys
            }
            encoded = self.encoder.encode(
                keypoints=keypoints,
                keypoints_visible=keypoints_visible,
                **auxiliary_encode_kwargs)

        else:
            encoded_list = []
            for _encoder in self.encoder:
                auxiliary_encode_kwargs = {
                    key: results[key]
                    for key in _encoder.auxiliary_encode_keys
                }
                encoded_list.append(
                    _encoder.encode(
                        keypoints=keypoints,
                        keypoints_visible=keypoints_visible,
                        **auxiliary_encode_kwargs))

            if self.multilevel:
                # For multilevel encoding, the encoded items from each encoder
                # should have the same keys.

                keys = encoded_list[0].keys()
                if not all(_encoded.keys() == keys
                           for _encoded in encoded_list):
                    raise ValueError(
                        'Encoded items from all encoders must have the same '
                        'keys if ``multilevel==True``.')

                encoded = {
                    k: [_encoded[k] for _encoded in encoded_list]
                    for k in keys
                }

            else:
                # For combined encoding, the encoded items from different
                # encoders should have no overlapping items, except for
                # `keypoint_weights`. If multiple `keypoint_weights` are given,
                # they will be multiplied as the final `keypoint_weights`.

                encoded = dict()
                keypoint_weights = []

                for _encoded in encoded_list:
                    for key, value in _encoded.items():
                        if key == 'keypoint_weights':
                            keypoint_weights.append(value)
                        elif key not in encoded:
                            encoded[key] = value
                        else:
                            raise ValueError(
                                f'Overlapping item "{key}" from multiple '
                                'encoders, which is not supported when '
                                '``multilevel==False``')

                if keypoint_weights:
                    encoded['keypoint_weights'] = keypoint_weights

        if self.use_dataset_keypoint_weights and 'keypoint_weights' in encoded:
            if isinstance(encoded['keypoint_weights'], list):
                for w in encoded['keypoint_weights']:
                    w *= results['dataset_keypoint_weights']
            else:
                encoded['keypoint_weights'] *= results[
                    'dataset_keypoint_weights']

        results.update(encoded)

        return results

    def __repr__(self) -> str:
        """print the basic information of the transform.

        Returns:
            str: Formatted string.
        """
        repr_str = self.__class__.__name__
        repr_str += (f'(encoder={str(self.encoder_cfg)}, ')
        repr_str += ('use_dataset_keypoint_weights='
                     f'{self.use_dataset_keypoint_weights})')
        return repr_str