# c2-standard-8 spot 9ct/h # sudo apt-get install git git-lfs pip cmake podman # git lfs install #conda # wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh # bash Miniconda3-latest-Linux-x86_64.sh # conda create --name dev python=3.10 # conda activate dev # conda create --name dev4 python=3.10 ########## # git clone https://huggingface.co/spaces/TobDeBer/Qwen-2-llamacpp # pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu # pip install huggingface_hub scikit-build-core llama-cpp-agent # import llama_cpp import os import json import subprocess from llama_cpp import Llama from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType from llama_cpp_agent.providers import LlamaCppPythonProvider from llama_cpp_agent.chat_history import BasicChatHistory from llama_cpp_agent.chat_history.messages import Roles import gradio as gr from huggingface_hub import hf_hub_download huggingface_token = os.getenv("HUGGINGFACE_TOKEN") hf_hub_download( repo_id="liwu/liwu_forum_post_2.0", filename="liwugpt.gguf", local_dir="./models" ) hf_hub_download( repo_id="liwu/liwu_forum_post_2.0", filename="liwugpt_q8_0.gguf", local_dir="./models" ) llm = None llm_model = None def respond( message, history: list[tuple[str, str]], model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty, ): chat_template = MessagesFormatterType.CHATML global llm global llm_model if llm is None or llm_model != model: llm = Llama( model_path=f"models/{model}", flash_attn=True, n_gpu_layers=81, n_batch=1024, n_ctx=8192, ) llm_model = model provider = LlamaCppPythonProvider(llm) agent = LlamaCppAgent( provider, system_prompt=f"{system_message}", predefined_messages_formatter_type=chat_template, debug_output=True ) settings = provider.get_provider_default_settings() settings.temperature = temperature settings.top_k = top_k settings.top_p = top_p settings.max_tokens = max_tokens settings.repeat_penalty = repeat_penalty settings.stream = True messages = BasicChatHistory() # for msn in history: # user = { # 'role': Roles.user, # 'content': msn[0] # } # assistant = { # 'role': Roles.assistant, # 'content': msn[1] # } # messages.add_message(user) # messages.add_message(assistant) stream = agent.get_chat_response( message, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=True ) outputs = "" for output in stream: outputs += output print(f"{output}", flush=True) yield outputs description = """

输入主贴内容,生成每个楼层的回复
powered by MNBVC

""" demo = gr.ChatInterface( respond, additional_inputs=[ gr.Dropdown([ 'liwugpt.gguf', 'liwugpt_q8_0.gguf' ], value="liwugpt_q8_0.gguf", label="Model" ), gr.Textbox(value="You are a helpful assistant.", label="System message"), gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p", ), gr.Slider( minimum=0, maximum=100, value=40, step=1, label="Top-k", ), gr.Slider( minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty", ), ], #retry_btn="Retry", #undo_btn="Undo", #clear_btn="Clear", #submit_btn="Send", title="里屋论坛回帖机器人", description=description, chatbot=gr.Chatbot( scale=1, show_copy_button=True ) ) if __name__ == "__main__": demo.launch()