Spaces:
Runtime error
Runtime error
File size: 7,424 Bytes
8bb8404 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
from functools import partial
from PIL import Image
import numpy as np
import gradio as gr
import torch
import os
import fire
from ldm.util import add_margin
_TITLE = '''SyncDreamer: Generating Multiview-consistent Images from a Single-view Image'''
_DESCRIPTION = '''
<div>
<a style="display:inline-block" href="https://liuyuan-pal.github.io/SyncDreamer/"><img src="https://img.shields.io/badge/SyncDremer-Homepage-blue"></a>
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2309.03453"><img src="https://img.shields.io/badge/2309.03453-f9f7f7?logo="></a>
<a style="display:inline-block; margin-left: .5em" href='https://github.com/liuyuan-pal/SyncDreamer'><img src='https://img.shields.io/github/stars/liuyuan-pal/SyncDreamer?style=social' /></a>
</div>
Given a single-view image, SyncDreamer is able to generate multiview-consistent images, which enables direct 3D reconstruction with NeuS or NeRF without SDS loss'''
_USER_GUIDE0 = "Step0: Please upload an image in the block above (or choose an example above). We use alpha values as object masks if given."
_USER_GUIDE1 = "Step1: Please select a crop size using the glider."
_USER_GUIDE2 = "Step2: Please choose a suitable elevation angle and then click the Generate button."
def mask_prediction(mask_predictor, image_in: Image.Image):
if image_in.mode=='RGBA':
return image_in
else:
raise NotImplementedError
def resize_inputs(image_input, crop_size):
alpha_np = np.asarray(image_input)[:, :, 3]
coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)]
min_x, min_y = np.min(coords, 0)
max_x, max_y = np.max(coords, 0)
ref_img_ = image_input.crop((min_x, min_y, max_x, max_y))
h, w = ref_img_.height, ref_img_.width
scale = crop_size / max(h, w)
h_, w_ = int(scale * h), int(scale * w)
ref_img_ = ref_img_.resize((w_, h_), resample=Image.BICUBIC)
results = add_margin(ref_img_, size=256)
return results
def run_demo():
device = f"cuda:0" if torch.cuda.is_available() else "cpu"
models = None # init_model(device, os.path.join(code_dir, ckpt))
# init sam model
mask_predictor = None # sam_init(device_idx)
# with open('instructions_12345.md', 'r') as f:
# article = f.read()
# NOTE: Examples must match inputs
example_folder = os.path.join(os.path.dirname(__file__), 'hf_demo', 'examples')
example_fns = os.listdir(example_folder)
example_fns.sort()
examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')]
# Compose demo layout & data flow.
with gr.Blocks(title=_TITLE, css="hf_demo/style.css") as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
# with gr.Column(scale=0):
# gr.DuplicateButton(value='Duplicate Space for private use', elem_id='duplicate-button')
gr.Markdown(_DESCRIPTION)
with gr.Row(variant='panel'):
with gr.Column(scale=1):
image_block = gr.Image(type='pil', image_mode='RGBA', height=256, label='Input image', tool=None, interactive=True)
guide_text = gr.Markdown(_USER_GUIDE0, visible=True)
gr.Examples(
examples=examples_full, # NOTE: elements must match inputs list!
inputs=[image_block],
outputs=[image_block],
cache_examples=False,
label='Examples (click one of the images below to start)',
examples_per_page=40
)
with gr.Column(scale=1):
sam_block = gr.Image(type='pil', image_mode='RGBA', label="SAM output", height=256, interactive=False)
crop_size_slider = gr.Slider(120, 240, 200, step=10, label='Crop size', interactive=True)
with gr.Column(scale=1):
input_block = gr.Image(type='pil', image_mode='RGB', label="Input to SyncDreamer", height=256, interactive=False)
elevation_slider = gr.Slider(-10, 40, 30, step=5, label='Elevation angle', interactive=True)
run_btn = gr.Button('Run Generation', variant='primary', interactive=False)
update_guide = lambda GUIDE_TEXT: gr.update(value=GUIDE_TEXT)
image_block.change(fn=partial(mask_prediction, mask_predictor), inputs=[image_block], outputs=[sam_block], queue=False)\
.success(fn=partial(update_guide, _USER_GUIDE1), outputs=[guide_text], queue=False)
crop_size_slider.change(fn=resize_inputs, inputs=[sam_block, crop_size_slider], outputs=[input_block], queue=False)\
.success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False)
run_btn.click
demo.queue().launch(share=False, max_threads=80) # auth=("admin", os.environ['PASSWD'])
if __name__=="__main__":
fire.Fire(run_demo) |