File size: 27,082 Bytes
8bb8404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
import abc
import os
from pathlib import Path

import cv2
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
from omegaconf import OmegaConf

from skimage.io import imread, imsave
from PIL import Image
from torch.optim.lr_scheduler import LambdaLR

from ldm.base_utils import read_pickle, concat_images_list
from renderer.neus_networks import SDFNetwork, RenderingNetwork, SingleVarianceNetwork, SDFHashGridNetwork, RenderingFFNetwork
from renderer.ngp_renderer import NGPNetwork
from ldm.util import instantiate_from_config

DEFAULT_RADIUS = np.sqrt(3)/2
DEFAULT_SIDE_LENGTH = 0.6

def sample_pdf(bins, weights, n_samples, det=True):
    device = bins.device
    dtype = bins.dtype
    # This implementation is from NeRF
    # Get pdf
    weights = weights + 1e-5  # prevent nans
    pdf = weights / torch.sum(weights, -1, keepdim=True)
    cdf = torch.cumsum(pdf, -1)
    cdf = torch.cat([torch.zeros_like(cdf[..., :1]), cdf], -1)
    # Take uniform samples
    if det:
        u = torch.linspace(0. + 0.5 / n_samples, 1. - 0.5 / n_samples, steps=n_samples, dtype=dtype, device=device)
        u = u.expand(list(cdf.shape[:-1]) + [n_samples])
    else:
        u = torch.rand(list(cdf.shape[:-1]) + [n_samples], dtype=dtype, device=device)

    # Invert CDF
    u = u.contiguous()
    inds = torch.searchsorted(cdf, u, right=True)
    below = torch.max(torch.zeros_like(inds - 1), inds - 1)
    above = torch.min((cdf.shape[-1] - 1) * torch.ones_like(inds), inds)
    inds_g = torch.stack([below, above], -1)  # (batch, N_samples, 2)

    matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]]
    cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g)
    bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g)

    denom = (cdf_g[..., 1] - cdf_g[..., 0])
    denom = torch.where(denom < 1e-5, torch.ones_like(denom), denom)
    t = (u - cdf_g[..., 0]) / denom
    samples = bins_g[..., 0] + t * (bins_g[..., 1] - bins_g[..., 0])

    return samples

def near_far_from_sphere(rays_o, rays_d, radius=DEFAULT_RADIUS):
    a = torch.sum(rays_d ** 2, dim=-1, keepdim=True)
    b = torch.sum(rays_o * rays_d, dim=-1, keepdim=True)
    mid = -b / a
    near = mid - radius
    far = mid + radius
    return near, far

class BackgroundRemoval:
    def __init__(self, device='cuda'):
        from carvekit.api.high import HiInterface
        self.interface = HiInterface(
            object_type="object",  # Can be "object" or "hairs-like".
            batch_size_seg=5,
            batch_size_matting=1,
            device=device,
            seg_mask_size=640,  # Use 640 for Tracer B7 and 320 for U2Net
            matting_mask_size=2048,
            trimap_prob_threshold=231,
            trimap_dilation=30,
            trimap_erosion_iters=5,
            fp16=True,
        )

    @torch.no_grad()
    def __call__(self, image):
        # image: [H, W, 3] array in [0, 255].
        image = Image.fromarray(image)
        image = self.interface([image])[0]
        image = np.array(image)
        return image


class BaseRenderer(nn.Module):
    def __init__(self, train_batch_num, test_batch_num):
        super().__init__()
        self.train_batch_num = train_batch_num
        self.test_batch_num = test_batch_num

    @abc.abstractmethod
    def render_impl(self, ray_batch, is_train, step):
        pass

    @abc.abstractmethod
    def render_with_loss(self, ray_batch, is_train, step):
        pass

    def render(self, ray_batch, is_train, step):
        batch_num = self.train_batch_num if is_train else self.test_batch_num
        ray_num = ray_batch['rays_o'].shape[0]
        outputs = {}
        for ri in range(0, ray_num, batch_num):
            cur_ray_batch = {}
            for k, v in ray_batch.items():
                cur_ray_batch[k] = v[ri:ri + batch_num]
            cur_outputs = self.render_impl(cur_ray_batch, is_train, step)
            for k, v in cur_outputs.items():
                if k not in outputs: outputs[k] = []
                outputs[k].append(v)

        for k, v in outputs.items():
            outputs[k] = torch.cat(v, 0)
        return outputs


class NeuSRenderer(BaseRenderer):
    def __init__(self, train_batch_num, test_batch_num, lambda_eikonal_loss=0.1, use_mask=True,
                 lambda_rgb_loss=1.0, lambda_mask_loss=0.0, rgb_loss='soft_l1', coarse_sn=64, fine_sn=64):
        super().__init__(train_batch_num, test_batch_num)
        self.n_samples = coarse_sn
        self.n_importance = fine_sn
        self.up_sample_steps = 4
        self.anneal_end = 200
        self.use_mask = use_mask
        self.lambda_eikonal_loss = lambda_eikonal_loss
        self.lambda_rgb_loss = lambda_rgb_loss
        self.lambda_mask_loss = lambda_mask_loss
        self.rgb_loss = rgb_loss

        self.sdf_network = SDFNetwork(d_out=257, d_in=3, d_hidden=256, n_layers=8, skip_in=[4], multires=6, bias=0.5, scale=1.0, geometric_init=True, weight_norm=True)
        self.color_network = RenderingNetwork(d_feature=256, d_in=9, d_out=3, d_hidden=256, n_layers=4, weight_norm=True, multires_view=4, squeeze_out=True)
        self.default_dtype = torch.float32
        self.deviation_network = SingleVarianceNetwork(0.3)

    @torch.no_grad()
    def get_vertex_colors(self, vertices):
        """
        @param vertices:  n,3
        @return:
        """
        V = vertices.shape[0]
        bn = 20480
        verts_colors = []
        with torch.no_grad():
            for vi in range(0, V, bn):
                verts = torch.from_numpy(vertices[vi:vi+bn].astype(np.float32)).cuda()
                feats = self.sdf_network(verts)[..., 1:]
                gradients = self.sdf_network.gradient(verts)  # ...,3
                gradients = F.normalize(gradients, dim=-1)
                colors = self.color_network(verts, gradients, gradients, feats)
                colors = torch.clamp(colors,min=0,max=1).cpu().numpy()
                verts_colors.append(colors)

        verts_colors = (np.concatenate(verts_colors, 0)*255).astype(np.uint8)
        return verts_colors

    def upsample(self, rays_o, rays_d, z_vals, sdf, n_importance, inv_s):
        """
        Up sampling give a fixed inv_s
        """
        device = rays_o.device
        batch_size, n_samples = z_vals.shape
        pts = rays_o[:, None, :] + rays_d[:, None, :] * z_vals[..., :, None]  # n_rays, n_samples, 3
        inner_mask = self.get_inner_mask(pts)
        # radius = torch.linalg.norm(pts, ord=2, dim=-1, keepdim=False)
        inside_sphere = inner_mask[:, :-1] | inner_mask[:, 1:]
        sdf = sdf.reshape(batch_size, n_samples)
        prev_sdf, next_sdf = sdf[:, :-1], sdf[:, 1:]
        prev_z_vals, next_z_vals = z_vals[:, :-1], z_vals[:, 1:]
        mid_sdf = (prev_sdf + next_sdf) * 0.5
        cos_val = (next_sdf - prev_sdf) / (next_z_vals - prev_z_vals + 1e-5)

        prev_cos_val = torch.cat([torch.zeros([batch_size, 1], dtype=self.default_dtype, device=device), cos_val[:, :-1]], dim=-1)
        cos_val = torch.stack([prev_cos_val, cos_val], dim=-1)
        cos_val, _ = torch.min(cos_val, dim=-1, keepdim=False)
        cos_val = cos_val.clip(-1e3, 0.0) * inside_sphere

        dist = (next_z_vals - prev_z_vals)
        prev_esti_sdf = mid_sdf - cos_val * dist * 0.5
        next_esti_sdf = mid_sdf + cos_val * dist * 0.5
        prev_cdf = torch.sigmoid(prev_esti_sdf * inv_s)
        next_cdf = torch.sigmoid(next_esti_sdf * inv_s)
        alpha = (prev_cdf - next_cdf + 1e-5) / (prev_cdf + 1e-5)
        weights = alpha * torch.cumprod(
            torch.cat([torch.ones([batch_size, 1], dtype=self.default_dtype, device=device), 1. - alpha + 1e-7], -1), -1)[:, :-1]

        z_samples = sample_pdf(z_vals, weights, n_importance, det=True).detach()
        return z_samples

    def cat_z_vals(self, rays_o, rays_d, z_vals, new_z_vals, sdf, last=False):
        batch_size, n_samples = z_vals.shape
        _, n_importance = new_z_vals.shape
        pts = rays_o[:, None, :] + rays_d[:, None, :] * new_z_vals[..., :, None]
        z_vals = torch.cat([z_vals, new_z_vals], dim=-1)
        z_vals, index = torch.sort(z_vals, dim=-1)

        if not last:
            device = pts.device
            new_sdf = self.sdf_network.sdf(pts.reshape(-1, 3)).reshape(batch_size, n_importance)
            sdf = torch.cat([sdf, new_sdf], dim=-1)
            xx = torch.arange(batch_size)[:, None].expand(batch_size, n_samples + n_importance).reshape(-1).to(device)
            index = index.reshape(-1)
            sdf = sdf[(xx, index)].reshape(batch_size, n_samples + n_importance)

        return z_vals, sdf

    def sample_depth(self, rays_o, rays_d, near, far, perturb):
        n_samples = self.n_samples
        n_importance = self.n_importance
        up_sample_steps = self.up_sample_steps
        device = rays_o.device

        # sample points
        batch_size = len(rays_o)
        z_vals = torch.linspace(0.0, 1.0, n_samples, dtype=self.default_dtype, device=device)   # sn
        z_vals = near + (far - near) * z_vals[None, :]            # rn,sn

        if perturb > 0:
            t_rand = (torch.rand([batch_size, 1]).to(device) - 0.5)
            z_vals = z_vals + t_rand * 2.0 / n_samples

        # Up sample
        with torch.no_grad():
            pts = rays_o[:, None, :] + rays_d[:, None, :] * z_vals[..., :, None]
            sdf = self.sdf_network.sdf(pts).reshape(batch_size, n_samples)

            for i in range(up_sample_steps):
                rn, sn = z_vals.shape
                inv_s = torch.ones(rn, sn - 1, dtype=self.default_dtype, device=device) * 64 * 2 ** i
                new_z_vals = self.upsample(rays_o, rays_d, z_vals, sdf, n_importance // up_sample_steps, inv_s)
                z_vals, sdf = self.cat_z_vals(rays_o, rays_d, z_vals, new_z_vals, sdf, last=(i + 1 == up_sample_steps))

        return z_vals

    def compute_sdf_alpha(self, points, dists, dirs, cos_anneal_ratio, step):
        # points [...,3] dists [...] dirs[...,3]
        sdf_nn_output = self.sdf_network(points)
        sdf = sdf_nn_output[..., 0]
        feature_vector = sdf_nn_output[..., 1:]

        gradients = self.sdf_network.gradient(points)  # ...,3
        inv_s = self.deviation_network(points).clip(1e-6, 1e6)  # ...,1
        inv_s = inv_s[..., 0]

        true_cos = (dirs * gradients).sum(-1)  # [...]
        iter_cos = -(F.relu(-true_cos * 0.5 + 0.5) * (1.0 - cos_anneal_ratio) +
                     F.relu(-true_cos) * cos_anneal_ratio)  # always non-positive

        # Estimate signed distances at section points
        estimated_next_sdf = sdf + iter_cos * dists * 0.5
        estimated_prev_sdf = sdf - iter_cos * dists * 0.5

        prev_cdf = torch.sigmoid(estimated_prev_sdf * inv_s)
        next_cdf = torch.sigmoid(estimated_next_sdf * inv_s)

        p = prev_cdf - next_cdf
        c = prev_cdf

        alpha = ((p + 1e-5) / (c + 1e-5)).clip(0.0, 1.0)  # [...]
        return alpha, gradients, feature_vector, inv_s, sdf

    def get_anneal_val(self, step):
        if self.anneal_end < 0:
            return 1.0
        else:
            return np.min([1.0, step / self.anneal_end])

    def get_inner_mask(self, points):
        return torch.sum(torch.abs(points)<=DEFAULT_SIDE_LENGTH,-1)==3

    def render_impl(self, ray_batch, is_train, step):
        near, far = near_far_from_sphere(ray_batch['rays_o'], ray_batch['rays_d'])
        rays_o, rays_d = ray_batch['rays_o'], ray_batch['rays_d']
        z_vals = self.sample_depth(rays_o, rays_d, near, far, is_train)

        batch_size, n_samples = z_vals.shape

        # section length in original space
        dists = z_vals[..., 1:] - z_vals[..., :-1]  # rn,sn-1
        dists = torch.cat([dists, dists[..., -1:]], -1)  # rn,sn
        mid_z_vals = z_vals + dists * 0.5

        points = rays_o.unsqueeze(-2) + rays_d.unsqueeze(-2) * mid_z_vals.unsqueeze(-1) # rn, sn, 3
        inner_mask = self.get_inner_mask(points)

        dirs = rays_d.unsqueeze(-2).expand(batch_size, n_samples, 3)
        dirs = F.normalize(dirs, dim=-1)
        device = rays_o.device
        alpha, sampled_color, gradient_error, normal = torch.zeros(batch_size, n_samples, dtype=self.default_dtype, device=device), \
            torch.zeros(batch_size, n_samples, 3, dtype=self.default_dtype, device=device), \
            torch.zeros([batch_size, n_samples], dtype=self.default_dtype, device=device), \
            torch.zeros([batch_size, n_samples, 3], dtype=self.default_dtype, device=device)
        if torch.sum(inner_mask) > 0:
            cos_anneal_ratio = self.get_anneal_val(step) if is_train else 1.0
            alpha[inner_mask], gradients, feature_vector, inv_s, sdf = self.compute_sdf_alpha(points[inner_mask], dists[inner_mask], dirs[inner_mask], cos_anneal_ratio, step)
            sampled_color[inner_mask] = self.color_network(points[inner_mask], gradients, -dirs[inner_mask], feature_vector)
            # Eikonal loss
            gradient_error[inner_mask] = (torch.linalg.norm(gradients, ord=2, dim=-1) - 1.0) ** 2 # rn,sn
            normal[inner_mask] = F.normalize(gradients, dim=-1)

        weights = alpha * torch.cumprod(torch.cat([torch.ones([batch_size, 1], dtype=self.default_dtype, device=device), 1. - alpha + 1e-7], -1), -1)[..., :-1]  # rn,sn
        mask = torch.sum(weights,dim=1).unsqueeze(-1) # rn,1
        color = (sampled_color * weights[..., None]).sum(dim=1) + (1 - mask) # add white background
        normal = (normal * weights[..., None]).sum(dim=1)

        outputs = {
            'rgb': color,  # rn,3
            'gradient_error': gradient_error,  # rn,sn
            'inner_mask': inner_mask,  # rn,sn
            'normal': normal,  # rn,3
            'mask': mask,  # rn,1
        }
        return outputs

    def render_with_loss(self, ray_batch, is_train, step):
        render_outputs = self.render(ray_batch, is_train, step)

        rgb_gt = ray_batch['rgb']
        rgb_pr = render_outputs['rgb']
        if self.rgb_loss == 'soft_l1':
            epsilon = 0.001
            rgb_loss = torch.sqrt(torch.sum((rgb_gt - rgb_pr) ** 2, dim=-1) + epsilon)
        elif self.rgb_loss =='mse':
            rgb_loss = F.mse_loss(rgb_pr, rgb_gt, reduction='none')
        else:
            raise NotImplementedError
        rgb_loss = torch.mean(rgb_loss)

        eikonal_loss = torch.sum(render_outputs['gradient_error'] * render_outputs['inner_mask']) / torch.sum(render_outputs['inner_mask'] + 1e-5)
        loss = rgb_loss * self.lambda_rgb_loss + eikonal_loss * self.lambda_eikonal_loss
        loss_batch = {
            'eikonal': eikonal_loss,
            'rendering': rgb_loss,
            # 'mask': mask_loss,
        }
        if self.lambda_mask_loss>0 and self.use_mask:
            mask_loss = F.mse_loss(render_outputs['mask'], ray_batch['mask'], reduction='none').mean()
            loss += mask_loss * self.lambda_mask_loss
            loss_batch['mask'] = mask_loss
        return loss, loss_batch


class NeRFRenderer(BaseRenderer):
    def __init__(self, train_batch_num, test_batch_num, bound=0.5, use_mask=False, lambda_rgb_loss=1.0, lambda_mask_loss=0.0):
        super().__init__(train_batch_num, test_batch_num)
        self.train_batch_num = train_batch_num
        self.test_batch_num = test_batch_num
        self.use_mask = use_mask
        self.field = NGPNetwork(bound=bound)

        self.update_interval = 16
        self.fp16 = True
        self.lambda_rgb_loss = lambda_rgb_loss
        self.lambda_mask_loss = lambda_mask_loss

    def render_impl(self, ray_batch, is_train, step):
        rays_o, rays_d = ray_batch['rays_o'], ray_batch['rays_d']
        with torch.cuda.amp.autocast(enabled=self.fp16):
            if step % self.update_interval==0:
                self.field.update_extra_state()

            outputs = self.field.render(rays_o, rays_d,)

        renderings={
            'rgb': outputs['image'],
            'depth': outputs['depth'],
            'mask': outputs['weights_sum'].unsqueeze(-1),
        }
        return renderings

    def render_with_loss(self, ray_batch, is_train, step):
        render_outputs = self.render(ray_batch, is_train, step)

        rgb_gt = ray_batch['rgb']
        rgb_pr = render_outputs['rgb']
        epsilon = 0.001
        rgb_loss = torch.sqrt(torch.sum((rgb_gt - rgb_pr) ** 2, dim=-1) + epsilon)
        rgb_loss = torch.mean(rgb_loss)
        loss = rgb_loss * self.lambda_rgb_loss
        loss_batch = {'rendering': rgb_loss}

        if self.use_mask:
            mask_loss = F.mse_loss(render_outputs['mask'], ray_batch['mask'], reduction='none')
            mask_loss = torch.mean(mask_loss)
            loss = loss + mask_loss * self.lambda_mask_loss
            loss_batch['mask'] = mask_loss
        return loss, loss_batch


class RendererTrainer(pl.LightningModule):
    def __init__(self, image_path, total_steps, warm_up_steps, log_dir, train_batch_fg_num=0,
                 use_cube_feats=False, cube_ckpt=None, cube_cfg=None, cube_bound=0.5,
                 train_batch_num=4096, test_batch_num=8192, use_warm_up=True, use_mask=True,
                 lambda_rgb_loss=1.0, lambda_mask_loss=0.0, renderer='neus',
                 # used in neus
                 lambda_eikonal_loss=0.1,
                 coarse_sn=64, fine_sn=64):
        super().__init__()
        self.num_images = 16
        self.image_size = 256
        self.log_dir = log_dir
        (Path(log_dir)/'images').mkdir(exist_ok=True, parents=True)
        self.train_batch_num = train_batch_num
        self.train_batch_fg_num = train_batch_fg_num
        self.test_batch_num = test_batch_num
        self.image_path = image_path
        self.total_steps = total_steps
        self.warm_up_steps = warm_up_steps
        self.use_mask = use_mask
        self.lambda_eikonal_loss = lambda_eikonal_loss
        self.lambda_rgb_loss = lambda_rgb_loss
        self.lambda_mask_loss = lambda_mask_loss
        self.use_warm_up = use_warm_up

        self.use_cube_feats, self.cube_cfg, self.cube_ckpt = use_cube_feats, cube_cfg, cube_ckpt

        self._init_dataset()
        if renderer=='neus':
            self.renderer = NeuSRenderer(train_batch_num, test_batch_num,
                                         lambda_rgb_loss=lambda_rgb_loss,
                                         lambda_eikonal_loss=lambda_eikonal_loss,
                                         lambda_mask_loss=lambda_mask_loss,
                                         coarse_sn=coarse_sn, fine_sn=fine_sn)
        elif renderer=='ngp':
            self.renderer = NeRFRenderer(train_batch_num, test_batch_num, bound=cube_bound, use_mask=use_mask, lambda_mask_loss=lambda_mask_loss, lambda_rgb_loss=lambda_rgb_loss,)
        else:
            raise NotImplementedError
        self.validation_index = 0

    def _construct_ray_batch(self, images_info):
        image_num = images_info['images'].shape[0]
        _, h, w, _ = images_info['images'].shape
        coords = torch.stack(torch.meshgrid(torch.arange(h), torch.arange(w)), -1)[:, :, (1, 0)]  # h,w,2
        coords = coords.float()[None, :, :, :].repeat(image_num, 1, 1, 1)  # imn,h,w,2
        coords = coords.reshape(image_num, h * w, 2)
        coords = torch.cat([coords, torch.ones(image_num, h * w, 1, dtype=torch.float32)], 2)  # imn,h*w,3

        # imn,h*w,3 @ imn,3,3 => imn,h*w,3
        rays_d = coords @ torch.inverse(images_info['Ks']).permute(0, 2, 1)
        poses = images_info['poses']  # imn,3,4
        R, t = poses[:, :, :3], poses[:, :, 3:]
        rays_d = rays_d @ R
        rays_d = F.normalize(rays_d, dim=-1)
        rays_o = -R.permute(0,2,1) @ t # imn,3,3 @ imn,3,1
        rays_o = rays_o.permute(0, 2, 1).repeat(1, h*w, 1) # imn,h*w,3

        ray_batch = {
            'rgb': images_info['images'].reshape(image_num*h*w,3),
            'mask': images_info['masks'].reshape(image_num*h*w,1),
            'rays_o': rays_o.reshape(image_num*h*w,3).float(),
            'rays_d': rays_d.reshape(image_num*h*w,3).float(),
        }
        return ray_batch

    @staticmethod
    def load_model(cfg, ckpt):
        config = OmegaConf.load(cfg)
        model = instantiate_from_config(config.model)
        print(f'loading model from {ckpt} ...')
        ckpt = torch.load(ckpt)
        model.load_state_dict(ckpt['state_dict'])
        model = model.cuda().eval()
        return model

    def _init_dataset(self):
        mask_predictor = BackgroundRemoval()
        self.K, self.azs, self.els, self.dists, self.poses = read_pickle(f'meta_info/camera-{self.num_images}.pkl')

        self.images_info = {'images': [] ,'masks': [], 'Ks': [], 'poses':[]}

        img = imread(self.image_path)

        for index in range(self.num_images):
            rgb = np.copy(img[:,index*self.image_size:(index+1)*self.image_size,:])
            # predict mask
            if self.use_mask:
                imsave(f'{self.log_dir}/input-{index}.png', rgb)
                masked_image = mask_predictor(rgb)
                imsave(f'{self.log_dir}/masked-{index}.png', masked_image)
                mask = masked_image[:,:,3].astype(np.float32)/255
            else:
                h, w, _ = rgb.shape
                mask = np.zeros([h,w], np.float32)

            rgb = rgb.astype(np.float32)/255
            K, pose = np.copy(self.K), self.poses[index]
            self.images_info['images'].append(torch.from_numpy(rgb.astype(np.float32))) # h,w,3
            self.images_info['masks'].append(torch.from_numpy(mask.astype(np.float32))) # h,w
            self.images_info['Ks'].append(torch.from_numpy(K.astype(np.float32)))
            self.images_info['poses'].append(torch.from_numpy(pose.astype(np.float32)))

        for k, v in self.images_info.items(): self.images_info[k] = torch.stack(v, 0) # stack all values

        self.train_batch = self._construct_ray_batch(self.images_info)
        self.train_batch_pseudo_fg = {}
        pseudo_fg_mask = torch.sum(self.train_batch['rgb']>0.99,1)!=3
        for k, v in self.train_batch.items():
            self.train_batch_pseudo_fg[k] = v[pseudo_fg_mask]
        self.train_ray_fg_num = int(torch.sum(pseudo_fg_mask).cpu().numpy())
        self.train_ray_num = self.num_images * self.image_size ** 2
        self._shuffle_train_batch()
        self._shuffle_train_fg_batch()

    def _shuffle_train_batch(self):
        self.train_batch_i = 0
        shuffle_idxs = torch.randperm(self.train_ray_num, device='cpu') # shuffle
        for k, v in self.train_batch.items():
            self.train_batch[k] = v[shuffle_idxs]

    def _shuffle_train_fg_batch(self):
        self.train_batch_fg_i = 0
        shuffle_idxs = torch.randperm(self.train_ray_fg_num, device='cpu') # shuffle
        for k, v in self.train_batch_pseudo_fg.items():
            self.train_batch_pseudo_fg[k] = v[shuffle_idxs]


    def training_step(self, batch, batch_idx):
        train_ray_batch = {k: v[self.train_batch_i:self.train_batch_i + self.train_batch_num].cuda() for k, v in self.train_batch.items()}
        self.train_batch_i += self.train_batch_num
        if self.train_batch_i + self.train_batch_num >= self.train_ray_num: self._shuffle_train_batch()

        if self.train_batch_fg_num>0:
            train_ray_batch_fg = {k: v[self.train_batch_fg_i:self.train_batch_fg_i+self.train_batch_fg_num].cuda() for k, v in self.train_batch_pseudo_fg.items()}
            self.train_batch_fg_i += self.train_batch_fg_num
            if self.train_batch_fg_i + self.train_batch_fg_num >= self.train_ray_fg_num: self._shuffle_train_fg_batch()
            for k, v in train_ray_batch_fg.items():
                train_ray_batch[k] = torch.cat([train_ray_batch[k], v], 0)

        loss, loss_batch = self.renderer.render_with_loss(train_ray_batch, is_train=True, step=self.global_step)
        self.log_dict(loss_batch, prog_bar=True, logger=True, on_step=True, on_epoch=False, rank_zero_only=True)

        self.log('step', self.global_step, prog_bar=True, on_step=True, on_epoch=False, logger=False, rank_zero_only=True)
        lr = self.optimizers().param_groups[0]['lr']
        self.log('lr', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False, rank_zero_only=True)
        return loss

    def _slice_images_info(self, index):
        return {k:v[index:index+1] for k, v in self.images_info.items()}

    @torch.no_grad()
    def validation_step(self, batch, batch_idx):
        with torch.no_grad():
            if self.global_rank==0:
                # we output an rendering image
                images_info = self._slice_images_info(self.validation_index)
                self.validation_index += 1
                self.validation_index %= self.num_images

                test_ray_batch = self._construct_ray_batch(images_info)
                test_ray_batch = {k: v.cuda() for k,v in test_ray_batch.items()}
                test_ray_batch['near'], test_ray_batch['far'] = near_far_from_sphere(test_ray_batch['rays_o'], test_ray_batch['rays_d'])
                render_outputs = self.renderer.render(test_ray_batch, False, self.global_step)

                process = lambda x: (x.cpu().numpy() * 255).astype(np.uint8)
                h, w = self.image_size, self.image_size
                rgb = torch.clamp(render_outputs['rgb'].reshape(h, w, 3), max=1.0, min=0.0)
                mask = torch.clamp(render_outputs['mask'].reshape(h, w, 1), max=1.0, min=0.0)
                mask_ = torch.repeat_interleave(mask, 3, dim=-1)
                output_image = concat_images_list(process(rgb), process(mask_))
                if 'normal' in render_outputs:
                    normal = torch.clamp((render_outputs['normal'].reshape(h, w, 3) + 1) / 2, max=1.0, min=0.0)
                    normal = normal * mask # we only show foregound normal
                    output_image = concat_images_list(output_image, process(normal))

                # save images
                imsave(f'{self.log_dir}/images/{self.global_step}.jpg', output_image)

    def configure_optimizers(self):
        lr = self.learning_rate
        opt = torch.optim.AdamW([{"params": self.renderer.parameters(), "lr": lr},], lr=lr)

        def schedule_fn(step):
            total_step = self.total_steps
            warm_up_step = self.warm_up_steps
            warm_up_init = 0.02
            warm_up_end = 1.0
            final_lr = 0.02
            interval = 1000
            times = total_step // interval
            ratio = np.power(final_lr, 1/times)
            if step<warm_up_step:
                learning_rate = (step / warm_up_step) * (warm_up_end - warm_up_init) + warm_up_init
            else:
                learning_rate = ratio ** (step // interval) * warm_up_end
            return learning_rate

        if self.use_warm_up:
            scheduler = [{
                    'scheduler': LambdaLR(opt, lr_lambda=schedule_fn),
                    'interval': 'step',
                    'frequency': 1
                }]
        else:
            scheduler = []
        return [opt], scheduler