Spaces:
Runtime error
Runtime error
File size: 27,082 Bytes
8bb8404 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
import abc
import os
from pathlib import Path
import cv2
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
from omegaconf import OmegaConf
from skimage.io import imread, imsave
from PIL import Image
from torch.optim.lr_scheduler import LambdaLR
from ldm.base_utils import read_pickle, concat_images_list
from renderer.neus_networks import SDFNetwork, RenderingNetwork, SingleVarianceNetwork, SDFHashGridNetwork, RenderingFFNetwork
from renderer.ngp_renderer import NGPNetwork
from ldm.util import instantiate_from_config
DEFAULT_RADIUS = np.sqrt(3)/2
DEFAULT_SIDE_LENGTH = 0.6
def sample_pdf(bins, weights, n_samples, det=True):
device = bins.device
dtype = bins.dtype
# This implementation is from NeRF
# Get pdf
weights = weights + 1e-5 # prevent nans
pdf = weights / torch.sum(weights, -1, keepdim=True)
cdf = torch.cumsum(pdf, -1)
cdf = torch.cat([torch.zeros_like(cdf[..., :1]), cdf], -1)
# Take uniform samples
if det:
u = torch.linspace(0. + 0.5 / n_samples, 1. - 0.5 / n_samples, steps=n_samples, dtype=dtype, device=device)
u = u.expand(list(cdf.shape[:-1]) + [n_samples])
else:
u = torch.rand(list(cdf.shape[:-1]) + [n_samples], dtype=dtype, device=device)
# Invert CDF
u = u.contiguous()
inds = torch.searchsorted(cdf, u, right=True)
below = torch.max(torch.zeros_like(inds - 1), inds - 1)
above = torch.min((cdf.shape[-1] - 1) * torch.ones_like(inds), inds)
inds_g = torch.stack([below, above], -1) # (batch, N_samples, 2)
matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]]
cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g)
bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g)
denom = (cdf_g[..., 1] - cdf_g[..., 0])
denom = torch.where(denom < 1e-5, torch.ones_like(denom), denom)
t = (u - cdf_g[..., 0]) / denom
samples = bins_g[..., 0] + t * (bins_g[..., 1] - bins_g[..., 0])
return samples
def near_far_from_sphere(rays_o, rays_d, radius=DEFAULT_RADIUS):
a = torch.sum(rays_d ** 2, dim=-1, keepdim=True)
b = torch.sum(rays_o * rays_d, dim=-1, keepdim=True)
mid = -b / a
near = mid - radius
far = mid + radius
return near, far
class BackgroundRemoval:
def __init__(self, device='cuda'):
from carvekit.api.high import HiInterface
self.interface = HiInterface(
object_type="object", # Can be "object" or "hairs-like".
batch_size_seg=5,
batch_size_matting=1,
device=device,
seg_mask_size=640, # Use 640 for Tracer B7 and 320 for U2Net
matting_mask_size=2048,
trimap_prob_threshold=231,
trimap_dilation=30,
trimap_erosion_iters=5,
fp16=True,
)
@torch.no_grad()
def __call__(self, image):
# image: [H, W, 3] array in [0, 255].
image = Image.fromarray(image)
image = self.interface([image])[0]
image = np.array(image)
return image
class BaseRenderer(nn.Module):
def __init__(self, train_batch_num, test_batch_num):
super().__init__()
self.train_batch_num = train_batch_num
self.test_batch_num = test_batch_num
@abc.abstractmethod
def render_impl(self, ray_batch, is_train, step):
pass
@abc.abstractmethod
def render_with_loss(self, ray_batch, is_train, step):
pass
def render(self, ray_batch, is_train, step):
batch_num = self.train_batch_num if is_train else self.test_batch_num
ray_num = ray_batch['rays_o'].shape[0]
outputs = {}
for ri in range(0, ray_num, batch_num):
cur_ray_batch = {}
for k, v in ray_batch.items():
cur_ray_batch[k] = v[ri:ri + batch_num]
cur_outputs = self.render_impl(cur_ray_batch, is_train, step)
for k, v in cur_outputs.items():
if k not in outputs: outputs[k] = []
outputs[k].append(v)
for k, v in outputs.items():
outputs[k] = torch.cat(v, 0)
return outputs
class NeuSRenderer(BaseRenderer):
def __init__(self, train_batch_num, test_batch_num, lambda_eikonal_loss=0.1, use_mask=True,
lambda_rgb_loss=1.0, lambda_mask_loss=0.0, rgb_loss='soft_l1', coarse_sn=64, fine_sn=64):
super().__init__(train_batch_num, test_batch_num)
self.n_samples = coarse_sn
self.n_importance = fine_sn
self.up_sample_steps = 4
self.anneal_end = 200
self.use_mask = use_mask
self.lambda_eikonal_loss = lambda_eikonal_loss
self.lambda_rgb_loss = lambda_rgb_loss
self.lambda_mask_loss = lambda_mask_loss
self.rgb_loss = rgb_loss
self.sdf_network = SDFNetwork(d_out=257, d_in=3, d_hidden=256, n_layers=8, skip_in=[4], multires=6, bias=0.5, scale=1.0, geometric_init=True, weight_norm=True)
self.color_network = RenderingNetwork(d_feature=256, d_in=9, d_out=3, d_hidden=256, n_layers=4, weight_norm=True, multires_view=4, squeeze_out=True)
self.default_dtype = torch.float32
self.deviation_network = SingleVarianceNetwork(0.3)
@torch.no_grad()
def get_vertex_colors(self, vertices):
"""
@param vertices: n,3
@return:
"""
V = vertices.shape[0]
bn = 20480
verts_colors = []
with torch.no_grad():
for vi in range(0, V, bn):
verts = torch.from_numpy(vertices[vi:vi+bn].astype(np.float32)).cuda()
feats = self.sdf_network(verts)[..., 1:]
gradients = self.sdf_network.gradient(verts) # ...,3
gradients = F.normalize(gradients, dim=-1)
colors = self.color_network(verts, gradients, gradients, feats)
colors = torch.clamp(colors,min=0,max=1).cpu().numpy()
verts_colors.append(colors)
verts_colors = (np.concatenate(verts_colors, 0)*255).astype(np.uint8)
return verts_colors
def upsample(self, rays_o, rays_d, z_vals, sdf, n_importance, inv_s):
"""
Up sampling give a fixed inv_s
"""
device = rays_o.device
batch_size, n_samples = z_vals.shape
pts = rays_o[:, None, :] + rays_d[:, None, :] * z_vals[..., :, None] # n_rays, n_samples, 3
inner_mask = self.get_inner_mask(pts)
# radius = torch.linalg.norm(pts, ord=2, dim=-1, keepdim=False)
inside_sphere = inner_mask[:, :-1] | inner_mask[:, 1:]
sdf = sdf.reshape(batch_size, n_samples)
prev_sdf, next_sdf = sdf[:, :-1], sdf[:, 1:]
prev_z_vals, next_z_vals = z_vals[:, :-1], z_vals[:, 1:]
mid_sdf = (prev_sdf + next_sdf) * 0.5
cos_val = (next_sdf - prev_sdf) / (next_z_vals - prev_z_vals + 1e-5)
prev_cos_val = torch.cat([torch.zeros([batch_size, 1], dtype=self.default_dtype, device=device), cos_val[:, :-1]], dim=-1)
cos_val = torch.stack([prev_cos_val, cos_val], dim=-1)
cos_val, _ = torch.min(cos_val, dim=-1, keepdim=False)
cos_val = cos_val.clip(-1e3, 0.0) * inside_sphere
dist = (next_z_vals - prev_z_vals)
prev_esti_sdf = mid_sdf - cos_val * dist * 0.5
next_esti_sdf = mid_sdf + cos_val * dist * 0.5
prev_cdf = torch.sigmoid(prev_esti_sdf * inv_s)
next_cdf = torch.sigmoid(next_esti_sdf * inv_s)
alpha = (prev_cdf - next_cdf + 1e-5) / (prev_cdf + 1e-5)
weights = alpha * torch.cumprod(
torch.cat([torch.ones([batch_size, 1], dtype=self.default_dtype, device=device), 1. - alpha + 1e-7], -1), -1)[:, :-1]
z_samples = sample_pdf(z_vals, weights, n_importance, det=True).detach()
return z_samples
def cat_z_vals(self, rays_o, rays_d, z_vals, new_z_vals, sdf, last=False):
batch_size, n_samples = z_vals.shape
_, n_importance = new_z_vals.shape
pts = rays_o[:, None, :] + rays_d[:, None, :] * new_z_vals[..., :, None]
z_vals = torch.cat([z_vals, new_z_vals], dim=-1)
z_vals, index = torch.sort(z_vals, dim=-1)
if not last:
device = pts.device
new_sdf = self.sdf_network.sdf(pts.reshape(-1, 3)).reshape(batch_size, n_importance)
sdf = torch.cat([sdf, new_sdf], dim=-1)
xx = torch.arange(batch_size)[:, None].expand(batch_size, n_samples + n_importance).reshape(-1).to(device)
index = index.reshape(-1)
sdf = sdf[(xx, index)].reshape(batch_size, n_samples + n_importance)
return z_vals, sdf
def sample_depth(self, rays_o, rays_d, near, far, perturb):
n_samples = self.n_samples
n_importance = self.n_importance
up_sample_steps = self.up_sample_steps
device = rays_o.device
# sample points
batch_size = len(rays_o)
z_vals = torch.linspace(0.0, 1.0, n_samples, dtype=self.default_dtype, device=device) # sn
z_vals = near + (far - near) * z_vals[None, :] # rn,sn
if perturb > 0:
t_rand = (torch.rand([batch_size, 1]).to(device) - 0.5)
z_vals = z_vals + t_rand * 2.0 / n_samples
# Up sample
with torch.no_grad():
pts = rays_o[:, None, :] + rays_d[:, None, :] * z_vals[..., :, None]
sdf = self.sdf_network.sdf(pts).reshape(batch_size, n_samples)
for i in range(up_sample_steps):
rn, sn = z_vals.shape
inv_s = torch.ones(rn, sn - 1, dtype=self.default_dtype, device=device) * 64 * 2 ** i
new_z_vals = self.upsample(rays_o, rays_d, z_vals, sdf, n_importance // up_sample_steps, inv_s)
z_vals, sdf = self.cat_z_vals(rays_o, rays_d, z_vals, new_z_vals, sdf, last=(i + 1 == up_sample_steps))
return z_vals
def compute_sdf_alpha(self, points, dists, dirs, cos_anneal_ratio, step):
# points [...,3] dists [...] dirs[...,3]
sdf_nn_output = self.sdf_network(points)
sdf = sdf_nn_output[..., 0]
feature_vector = sdf_nn_output[..., 1:]
gradients = self.sdf_network.gradient(points) # ...,3
inv_s = self.deviation_network(points).clip(1e-6, 1e6) # ...,1
inv_s = inv_s[..., 0]
true_cos = (dirs * gradients).sum(-1) # [...]
iter_cos = -(F.relu(-true_cos * 0.5 + 0.5) * (1.0 - cos_anneal_ratio) +
F.relu(-true_cos) * cos_anneal_ratio) # always non-positive
# Estimate signed distances at section points
estimated_next_sdf = sdf + iter_cos * dists * 0.5
estimated_prev_sdf = sdf - iter_cos * dists * 0.5
prev_cdf = torch.sigmoid(estimated_prev_sdf * inv_s)
next_cdf = torch.sigmoid(estimated_next_sdf * inv_s)
p = prev_cdf - next_cdf
c = prev_cdf
alpha = ((p + 1e-5) / (c + 1e-5)).clip(0.0, 1.0) # [...]
return alpha, gradients, feature_vector, inv_s, sdf
def get_anneal_val(self, step):
if self.anneal_end < 0:
return 1.0
else:
return np.min([1.0, step / self.anneal_end])
def get_inner_mask(self, points):
return torch.sum(torch.abs(points)<=DEFAULT_SIDE_LENGTH,-1)==3
def render_impl(self, ray_batch, is_train, step):
near, far = near_far_from_sphere(ray_batch['rays_o'], ray_batch['rays_d'])
rays_o, rays_d = ray_batch['rays_o'], ray_batch['rays_d']
z_vals = self.sample_depth(rays_o, rays_d, near, far, is_train)
batch_size, n_samples = z_vals.shape
# section length in original space
dists = z_vals[..., 1:] - z_vals[..., :-1] # rn,sn-1
dists = torch.cat([dists, dists[..., -1:]], -1) # rn,sn
mid_z_vals = z_vals + dists * 0.5
points = rays_o.unsqueeze(-2) + rays_d.unsqueeze(-2) * mid_z_vals.unsqueeze(-1) # rn, sn, 3
inner_mask = self.get_inner_mask(points)
dirs = rays_d.unsqueeze(-2).expand(batch_size, n_samples, 3)
dirs = F.normalize(dirs, dim=-1)
device = rays_o.device
alpha, sampled_color, gradient_error, normal = torch.zeros(batch_size, n_samples, dtype=self.default_dtype, device=device), \
torch.zeros(batch_size, n_samples, 3, dtype=self.default_dtype, device=device), \
torch.zeros([batch_size, n_samples], dtype=self.default_dtype, device=device), \
torch.zeros([batch_size, n_samples, 3], dtype=self.default_dtype, device=device)
if torch.sum(inner_mask) > 0:
cos_anneal_ratio = self.get_anneal_val(step) if is_train else 1.0
alpha[inner_mask], gradients, feature_vector, inv_s, sdf = self.compute_sdf_alpha(points[inner_mask], dists[inner_mask], dirs[inner_mask], cos_anneal_ratio, step)
sampled_color[inner_mask] = self.color_network(points[inner_mask], gradients, -dirs[inner_mask], feature_vector)
# Eikonal loss
gradient_error[inner_mask] = (torch.linalg.norm(gradients, ord=2, dim=-1) - 1.0) ** 2 # rn,sn
normal[inner_mask] = F.normalize(gradients, dim=-1)
weights = alpha * torch.cumprod(torch.cat([torch.ones([batch_size, 1], dtype=self.default_dtype, device=device), 1. - alpha + 1e-7], -1), -1)[..., :-1] # rn,sn
mask = torch.sum(weights,dim=1).unsqueeze(-1) # rn,1
color = (sampled_color * weights[..., None]).sum(dim=1) + (1 - mask) # add white background
normal = (normal * weights[..., None]).sum(dim=1)
outputs = {
'rgb': color, # rn,3
'gradient_error': gradient_error, # rn,sn
'inner_mask': inner_mask, # rn,sn
'normal': normal, # rn,3
'mask': mask, # rn,1
}
return outputs
def render_with_loss(self, ray_batch, is_train, step):
render_outputs = self.render(ray_batch, is_train, step)
rgb_gt = ray_batch['rgb']
rgb_pr = render_outputs['rgb']
if self.rgb_loss == 'soft_l1':
epsilon = 0.001
rgb_loss = torch.sqrt(torch.sum((rgb_gt - rgb_pr) ** 2, dim=-1) + epsilon)
elif self.rgb_loss =='mse':
rgb_loss = F.mse_loss(rgb_pr, rgb_gt, reduction='none')
else:
raise NotImplementedError
rgb_loss = torch.mean(rgb_loss)
eikonal_loss = torch.sum(render_outputs['gradient_error'] * render_outputs['inner_mask']) / torch.sum(render_outputs['inner_mask'] + 1e-5)
loss = rgb_loss * self.lambda_rgb_loss + eikonal_loss * self.lambda_eikonal_loss
loss_batch = {
'eikonal': eikonal_loss,
'rendering': rgb_loss,
# 'mask': mask_loss,
}
if self.lambda_mask_loss>0 and self.use_mask:
mask_loss = F.mse_loss(render_outputs['mask'], ray_batch['mask'], reduction='none').mean()
loss += mask_loss * self.lambda_mask_loss
loss_batch['mask'] = mask_loss
return loss, loss_batch
class NeRFRenderer(BaseRenderer):
def __init__(self, train_batch_num, test_batch_num, bound=0.5, use_mask=False, lambda_rgb_loss=1.0, lambda_mask_loss=0.0):
super().__init__(train_batch_num, test_batch_num)
self.train_batch_num = train_batch_num
self.test_batch_num = test_batch_num
self.use_mask = use_mask
self.field = NGPNetwork(bound=bound)
self.update_interval = 16
self.fp16 = True
self.lambda_rgb_loss = lambda_rgb_loss
self.lambda_mask_loss = lambda_mask_loss
def render_impl(self, ray_batch, is_train, step):
rays_o, rays_d = ray_batch['rays_o'], ray_batch['rays_d']
with torch.cuda.amp.autocast(enabled=self.fp16):
if step % self.update_interval==0:
self.field.update_extra_state()
outputs = self.field.render(rays_o, rays_d,)
renderings={
'rgb': outputs['image'],
'depth': outputs['depth'],
'mask': outputs['weights_sum'].unsqueeze(-1),
}
return renderings
def render_with_loss(self, ray_batch, is_train, step):
render_outputs = self.render(ray_batch, is_train, step)
rgb_gt = ray_batch['rgb']
rgb_pr = render_outputs['rgb']
epsilon = 0.001
rgb_loss = torch.sqrt(torch.sum((rgb_gt - rgb_pr) ** 2, dim=-1) + epsilon)
rgb_loss = torch.mean(rgb_loss)
loss = rgb_loss * self.lambda_rgb_loss
loss_batch = {'rendering': rgb_loss}
if self.use_mask:
mask_loss = F.mse_loss(render_outputs['mask'], ray_batch['mask'], reduction='none')
mask_loss = torch.mean(mask_loss)
loss = loss + mask_loss * self.lambda_mask_loss
loss_batch['mask'] = mask_loss
return loss, loss_batch
class RendererTrainer(pl.LightningModule):
def __init__(self, image_path, total_steps, warm_up_steps, log_dir, train_batch_fg_num=0,
use_cube_feats=False, cube_ckpt=None, cube_cfg=None, cube_bound=0.5,
train_batch_num=4096, test_batch_num=8192, use_warm_up=True, use_mask=True,
lambda_rgb_loss=1.0, lambda_mask_loss=0.0, renderer='neus',
# used in neus
lambda_eikonal_loss=0.1,
coarse_sn=64, fine_sn=64):
super().__init__()
self.num_images = 16
self.image_size = 256
self.log_dir = log_dir
(Path(log_dir)/'images').mkdir(exist_ok=True, parents=True)
self.train_batch_num = train_batch_num
self.train_batch_fg_num = train_batch_fg_num
self.test_batch_num = test_batch_num
self.image_path = image_path
self.total_steps = total_steps
self.warm_up_steps = warm_up_steps
self.use_mask = use_mask
self.lambda_eikonal_loss = lambda_eikonal_loss
self.lambda_rgb_loss = lambda_rgb_loss
self.lambda_mask_loss = lambda_mask_loss
self.use_warm_up = use_warm_up
self.use_cube_feats, self.cube_cfg, self.cube_ckpt = use_cube_feats, cube_cfg, cube_ckpt
self._init_dataset()
if renderer=='neus':
self.renderer = NeuSRenderer(train_batch_num, test_batch_num,
lambda_rgb_loss=lambda_rgb_loss,
lambda_eikonal_loss=lambda_eikonal_loss,
lambda_mask_loss=lambda_mask_loss,
coarse_sn=coarse_sn, fine_sn=fine_sn)
elif renderer=='ngp':
self.renderer = NeRFRenderer(train_batch_num, test_batch_num, bound=cube_bound, use_mask=use_mask, lambda_mask_loss=lambda_mask_loss, lambda_rgb_loss=lambda_rgb_loss,)
else:
raise NotImplementedError
self.validation_index = 0
def _construct_ray_batch(self, images_info):
image_num = images_info['images'].shape[0]
_, h, w, _ = images_info['images'].shape
coords = torch.stack(torch.meshgrid(torch.arange(h), torch.arange(w)), -1)[:, :, (1, 0)] # h,w,2
coords = coords.float()[None, :, :, :].repeat(image_num, 1, 1, 1) # imn,h,w,2
coords = coords.reshape(image_num, h * w, 2)
coords = torch.cat([coords, torch.ones(image_num, h * w, 1, dtype=torch.float32)], 2) # imn,h*w,3
# imn,h*w,3 @ imn,3,3 => imn,h*w,3
rays_d = coords @ torch.inverse(images_info['Ks']).permute(0, 2, 1)
poses = images_info['poses'] # imn,3,4
R, t = poses[:, :, :3], poses[:, :, 3:]
rays_d = rays_d @ R
rays_d = F.normalize(rays_d, dim=-1)
rays_o = -R.permute(0,2,1) @ t # imn,3,3 @ imn,3,1
rays_o = rays_o.permute(0, 2, 1).repeat(1, h*w, 1) # imn,h*w,3
ray_batch = {
'rgb': images_info['images'].reshape(image_num*h*w,3),
'mask': images_info['masks'].reshape(image_num*h*w,1),
'rays_o': rays_o.reshape(image_num*h*w,3).float(),
'rays_d': rays_d.reshape(image_num*h*w,3).float(),
}
return ray_batch
@staticmethod
def load_model(cfg, ckpt):
config = OmegaConf.load(cfg)
model = instantiate_from_config(config.model)
print(f'loading model from {ckpt} ...')
ckpt = torch.load(ckpt)
model.load_state_dict(ckpt['state_dict'])
model = model.cuda().eval()
return model
def _init_dataset(self):
mask_predictor = BackgroundRemoval()
self.K, self.azs, self.els, self.dists, self.poses = read_pickle(f'meta_info/camera-{self.num_images}.pkl')
self.images_info = {'images': [] ,'masks': [], 'Ks': [], 'poses':[]}
img = imread(self.image_path)
for index in range(self.num_images):
rgb = np.copy(img[:,index*self.image_size:(index+1)*self.image_size,:])
# predict mask
if self.use_mask:
imsave(f'{self.log_dir}/input-{index}.png', rgb)
masked_image = mask_predictor(rgb)
imsave(f'{self.log_dir}/masked-{index}.png', masked_image)
mask = masked_image[:,:,3].astype(np.float32)/255
else:
h, w, _ = rgb.shape
mask = np.zeros([h,w], np.float32)
rgb = rgb.astype(np.float32)/255
K, pose = np.copy(self.K), self.poses[index]
self.images_info['images'].append(torch.from_numpy(rgb.astype(np.float32))) # h,w,3
self.images_info['masks'].append(torch.from_numpy(mask.astype(np.float32))) # h,w
self.images_info['Ks'].append(torch.from_numpy(K.astype(np.float32)))
self.images_info['poses'].append(torch.from_numpy(pose.astype(np.float32)))
for k, v in self.images_info.items(): self.images_info[k] = torch.stack(v, 0) # stack all values
self.train_batch = self._construct_ray_batch(self.images_info)
self.train_batch_pseudo_fg = {}
pseudo_fg_mask = torch.sum(self.train_batch['rgb']>0.99,1)!=3
for k, v in self.train_batch.items():
self.train_batch_pseudo_fg[k] = v[pseudo_fg_mask]
self.train_ray_fg_num = int(torch.sum(pseudo_fg_mask).cpu().numpy())
self.train_ray_num = self.num_images * self.image_size ** 2
self._shuffle_train_batch()
self._shuffle_train_fg_batch()
def _shuffle_train_batch(self):
self.train_batch_i = 0
shuffle_idxs = torch.randperm(self.train_ray_num, device='cpu') # shuffle
for k, v in self.train_batch.items():
self.train_batch[k] = v[shuffle_idxs]
def _shuffle_train_fg_batch(self):
self.train_batch_fg_i = 0
shuffle_idxs = torch.randperm(self.train_ray_fg_num, device='cpu') # shuffle
for k, v in self.train_batch_pseudo_fg.items():
self.train_batch_pseudo_fg[k] = v[shuffle_idxs]
def training_step(self, batch, batch_idx):
train_ray_batch = {k: v[self.train_batch_i:self.train_batch_i + self.train_batch_num].cuda() for k, v in self.train_batch.items()}
self.train_batch_i += self.train_batch_num
if self.train_batch_i + self.train_batch_num >= self.train_ray_num: self._shuffle_train_batch()
if self.train_batch_fg_num>0:
train_ray_batch_fg = {k: v[self.train_batch_fg_i:self.train_batch_fg_i+self.train_batch_fg_num].cuda() for k, v in self.train_batch_pseudo_fg.items()}
self.train_batch_fg_i += self.train_batch_fg_num
if self.train_batch_fg_i + self.train_batch_fg_num >= self.train_ray_fg_num: self._shuffle_train_fg_batch()
for k, v in train_ray_batch_fg.items():
train_ray_batch[k] = torch.cat([train_ray_batch[k], v], 0)
loss, loss_batch = self.renderer.render_with_loss(train_ray_batch, is_train=True, step=self.global_step)
self.log_dict(loss_batch, prog_bar=True, logger=True, on_step=True, on_epoch=False, rank_zero_only=True)
self.log('step', self.global_step, prog_bar=True, on_step=True, on_epoch=False, logger=False, rank_zero_only=True)
lr = self.optimizers().param_groups[0]['lr']
self.log('lr', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False, rank_zero_only=True)
return loss
def _slice_images_info(self, index):
return {k:v[index:index+1] for k, v in self.images_info.items()}
@torch.no_grad()
def validation_step(self, batch, batch_idx):
with torch.no_grad():
if self.global_rank==0:
# we output an rendering image
images_info = self._slice_images_info(self.validation_index)
self.validation_index += 1
self.validation_index %= self.num_images
test_ray_batch = self._construct_ray_batch(images_info)
test_ray_batch = {k: v.cuda() for k,v in test_ray_batch.items()}
test_ray_batch['near'], test_ray_batch['far'] = near_far_from_sphere(test_ray_batch['rays_o'], test_ray_batch['rays_d'])
render_outputs = self.renderer.render(test_ray_batch, False, self.global_step)
process = lambda x: (x.cpu().numpy() * 255).astype(np.uint8)
h, w = self.image_size, self.image_size
rgb = torch.clamp(render_outputs['rgb'].reshape(h, w, 3), max=1.0, min=0.0)
mask = torch.clamp(render_outputs['mask'].reshape(h, w, 1), max=1.0, min=0.0)
mask_ = torch.repeat_interleave(mask, 3, dim=-1)
output_image = concat_images_list(process(rgb), process(mask_))
if 'normal' in render_outputs:
normal = torch.clamp((render_outputs['normal'].reshape(h, w, 3) + 1) / 2, max=1.0, min=0.0)
normal = normal * mask # we only show foregound normal
output_image = concat_images_list(output_image, process(normal))
# save images
imsave(f'{self.log_dir}/images/{self.global_step}.jpg', output_image)
def configure_optimizers(self):
lr = self.learning_rate
opt = torch.optim.AdamW([{"params": self.renderer.parameters(), "lr": lr},], lr=lr)
def schedule_fn(step):
total_step = self.total_steps
warm_up_step = self.warm_up_steps
warm_up_init = 0.02
warm_up_end = 1.0
final_lr = 0.02
interval = 1000
times = total_step // interval
ratio = np.power(final_lr, 1/times)
if step<warm_up_step:
learning_rate = (step / warm_up_step) * (warm_up_end - warm_up_init) + warm_up_init
else:
learning_rate = ratio ** (step // interval) * warm_up_end
return learning_rate
if self.use_warm_up:
scheduler = [{
'scheduler': LambdaLR(opt, lr_lambda=schedule_fn),
'interval': 'step',
'frequency': 1
}]
else:
scheduler = []
return [opt], scheduler
|