Spaces:
Runtime error
Runtime error
File size: 29,447 Bytes
8bb8404 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 |
import math
import trimesh
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from packaging import version as pver
import tinycudann as tcnn
from torch.autograd import Function
from torch.cuda.amp import custom_bwd, custom_fwd
import raymarching
def custom_meshgrid(*args):
# ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid
if pver.parse(torch.__version__) < pver.parse('1.10'):
return torch.meshgrid(*args)
else:
return torch.meshgrid(*args, indexing='ij')
def sample_pdf(bins, weights, n_samples, det=False):
# This implementation is from NeRF
# bins: [B, T], old_z_vals
# weights: [B, T - 1], bin weights.
# return: [B, n_samples], new_z_vals
# Get pdf
weights = weights + 1e-5 # prevent nans
pdf = weights / torch.sum(weights, -1, keepdim=True)
cdf = torch.cumsum(pdf, -1)
cdf = torch.cat([torch.zeros_like(cdf[..., :1]), cdf], -1)
# Take uniform samples
if det:
u = torch.linspace(0. + 0.5 / n_samples, 1. - 0.5 / n_samples, steps=n_samples).to(weights.device)
u = u.expand(list(cdf.shape[:-1]) + [n_samples])
else:
u = torch.rand(list(cdf.shape[:-1]) + [n_samples]).to(weights.device)
# Invert CDF
u = u.contiguous()
inds = torch.searchsorted(cdf, u, right=True)
below = torch.max(torch.zeros_like(inds - 1), inds - 1)
above = torch.min((cdf.shape[-1] - 1) * torch.ones_like(inds), inds)
inds_g = torch.stack([below, above], -1) # (B, n_samples, 2)
matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]]
cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g)
bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g)
denom = (cdf_g[..., 1] - cdf_g[..., 0])
denom = torch.where(denom < 1e-5, torch.ones_like(denom), denom)
t = (u - cdf_g[..., 0]) / denom
samples = bins_g[..., 0] + t * (bins_g[..., 1] - bins_g[..., 0])
return samples
def plot_pointcloud(pc, color=None):
# pc: [N, 3]
# color: [N, 3/4]
print('[visualize points]', pc.shape, pc.dtype, pc.min(0), pc.max(0))
pc = trimesh.PointCloud(pc, color)
# axis
axes = trimesh.creation.axis(axis_length=4)
# sphere
sphere = trimesh.creation.icosphere(radius=1)
trimesh.Scene([pc, axes, sphere]).show()
class NGPRenderer(nn.Module):
def __init__(self,
bound=1,
cuda_ray=True,
density_scale=1, # scale up deltas (or sigmas), to make the density grid more sharp. larger value than 1 usually improves performance.
min_near=0.2,
density_thresh=0.01,
bg_radius=-1,
):
super().__init__()
self.bound = bound
self.cascade = 1
self.grid_size = 128
self.density_scale = density_scale
self.min_near = min_near
self.density_thresh = density_thresh
self.bg_radius = bg_radius # radius of the background sphere.
# prepare aabb with a 6D tensor (xmin, ymin, zmin, xmax, ymax, zmax)
# NOTE: aabb (can be rectangular) is only used to generate points, we still rely on bound (always cubic) to calculate density grid and hashing.
aabb_train = torch.FloatTensor([-bound, -bound, -bound, bound, bound, bound])
aabb_infer = aabb_train.clone()
self.register_buffer('aabb_train', aabb_train)
self.register_buffer('aabb_infer', aabb_infer)
# extra state for cuda raymarching
self.cuda_ray = cuda_ray
if cuda_ray:
# density grid
density_grid = torch.zeros([self.cascade, self.grid_size ** 3]) # [CAS, H * H * H]
density_bitfield = torch.zeros(self.cascade * self.grid_size ** 3 // 8, dtype=torch.uint8) # [CAS * H * H * H // 8]
self.register_buffer('density_grid', density_grid)
self.register_buffer('density_bitfield', density_bitfield)
self.mean_density = 0
self.iter_density = 0
# step counter
step_counter = torch.zeros(16, 2, dtype=torch.int32) # 16 is hardcoded for averaging...
self.register_buffer('step_counter', step_counter)
self.mean_count = 0
self.local_step = 0
def forward(self, x, d):
raise NotImplementedError()
# separated density and color query (can accelerate non-cuda-ray mode.)
def density(self, x):
raise NotImplementedError()
def color(self, x, d, mask=None, **kwargs):
raise NotImplementedError()
def reset_extra_state(self):
if not self.cuda_ray:
return
# density grid
self.density_grid.zero_()
self.mean_density = 0
self.iter_density = 0
# step counter
self.step_counter.zero_()
self.mean_count = 0
self.local_step = 0
def run(self, rays_o, rays_d, num_steps=128, upsample_steps=128, bg_color=None, perturb=False, **kwargs):
# rays_o, rays_d: [B, N, 3], assumes B == 1
# bg_color: [3] in range [0, 1]
# return: image: [B, N, 3], depth: [B, N]
prefix = rays_o.shape[:-1]
rays_o = rays_o.contiguous().view(-1, 3)
rays_d = rays_d.contiguous().view(-1, 3)
N = rays_o.shape[0] # N = B * N, in fact
device = rays_o.device
# choose aabb
aabb = self.aabb_train if self.training else self.aabb_infer
# sample steps
nears, fars = raymarching.near_far_from_aabb(rays_o, rays_d, aabb, self.min_near)
nears.unsqueeze_(-1)
fars.unsqueeze_(-1)
#print(f'nears = {nears.min().item()} ~ {nears.max().item()}, fars = {fars.min().item()} ~ {fars.max().item()}')
z_vals = torch.linspace(0.0, 1.0, num_steps, device=device).unsqueeze(0) # [1, T]
z_vals = z_vals.expand((N, num_steps)) # [N, T]
z_vals = nears + (fars - nears) * z_vals # [N, T], in [nears, fars]
# perturb z_vals
sample_dist = (fars - nears) / num_steps
if perturb:
z_vals = z_vals + (torch.rand(z_vals.shape, device=device) - 0.5) * sample_dist
#z_vals = z_vals.clamp(nears, fars) # avoid out of bounds xyzs.
# generate xyzs
xyzs = rays_o.unsqueeze(-2) + rays_d.unsqueeze(-2) * z_vals.unsqueeze(-1) # [N, 1, 3] * [N, T, 1] -> [N, T, 3]
xyzs = torch.min(torch.max(xyzs, aabb[:3]), aabb[3:]) # a manual clip.
#plot_pointcloud(xyzs.reshape(-1, 3).detach().cpu().numpy())
# query SDF and RGB
density_outputs = self.density(xyzs.reshape(-1, 3))
#sigmas = density_outputs['sigma'].view(N, num_steps) # [N, T]
for k, v in density_outputs.items():
density_outputs[k] = v.view(N, num_steps, -1)
# upsample z_vals (nerf-like)
if upsample_steps > 0:
with torch.no_grad():
deltas = z_vals[..., 1:] - z_vals[..., :-1] # [N, T-1]
deltas = torch.cat([deltas, sample_dist * torch.ones_like(deltas[..., :1])], dim=-1)
alphas = 1 - torch.exp(-deltas * self.density_scale * density_outputs['sigma'].squeeze(-1)) # [N, T]
alphas_shifted = torch.cat([torch.ones_like(alphas[..., :1]), 1 - alphas + 1e-15], dim=-1) # [N, T+1]
weights = alphas * torch.cumprod(alphas_shifted, dim=-1)[..., :-1] # [N, T]
# sample new z_vals
z_vals_mid = (z_vals[..., :-1] + 0.5 * deltas[..., :-1]) # [N, T-1]
new_z_vals = sample_pdf(z_vals_mid, weights[:, 1:-1], upsample_steps, det=not self.training).detach() # [N, t]
new_xyzs = rays_o.unsqueeze(-2) + rays_d.unsqueeze(-2) * new_z_vals.unsqueeze(-1) # [N, 1, 3] * [N, t, 1] -> [N, t, 3]
new_xyzs = torch.min(torch.max(new_xyzs, aabb[:3]), aabb[3:]) # a manual clip.
# only forward new points to save computation
new_density_outputs = self.density(new_xyzs.reshape(-1, 3))
#new_sigmas = new_density_outputs['sigma'].view(N, upsample_steps) # [N, t]
for k, v in new_density_outputs.items():
new_density_outputs[k] = v.view(N, upsample_steps, -1)
# re-order
z_vals = torch.cat([z_vals, new_z_vals], dim=1) # [N, T+t]
z_vals, z_index = torch.sort(z_vals, dim=1)
xyzs = torch.cat([xyzs, new_xyzs], dim=1) # [N, T+t, 3]
xyzs = torch.gather(xyzs, dim=1, index=z_index.unsqueeze(-1).expand_as(xyzs))
for k in density_outputs:
tmp_output = torch.cat([density_outputs[k], new_density_outputs[k]], dim=1)
density_outputs[k] = torch.gather(tmp_output, dim=1, index=z_index.unsqueeze(-1).expand_as(tmp_output))
deltas = z_vals[..., 1:] - z_vals[..., :-1] # [N, T+t-1]
deltas = torch.cat([deltas, sample_dist * torch.ones_like(deltas[..., :1])], dim=-1)
alphas = 1 - torch.exp(-deltas * self.density_scale * density_outputs['sigma'].squeeze(-1)) # [N, T+t]
alphas_shifted = torch.cat([torch.ones_like(alphas[..., :1]), 1 - alphas + 1e-15], dim=-1) # [N, T+t+1]
weights = alphas * torch.cumprod(alphas_shifted, dim=-1)[..., :-1] # [N, T+t]
dirs = rays_d.view(-1, 1, 3).expand_as(xyzs)
for k, v in density_outputs.items():
density_outputs[k] = v.view(-1, v.shape[-1])
mask = weights > 1e-4 # hard coded
rgbs = self.color(xyzs.reshape(-1, 3), dirs.reshape(-1, 3), mask=mask.reshape(-1), **density_outputs)
rgbs = rgbs.view(N, -1, 3) # [N, T+t, 3]
#print(xyzs.shape, 'valid_rgb:', mask.sum().item())
# calculate weight_sum (mask)
weights_sum = weights.sum(dim=-1) # [N]
# calculate depth
ori_z_vals = ((z_vals - nears) / (fars - nears)).clamp(0, 1)
depth = torch.sum(weights * ori_z_vals, dim=-1)
# calculate color
image = torch.sum(weights.unsqueeze(-1) * rgbs, dim=-2) # [N, 3], in [0, 1]
# mix background color
if self.bg_radius > 0:
# use the bg model to calculate bg_color
sph = raymarching.sph_from_ray(rays_o, rays_d, self.bg_radius) # [N, 2] in [-1, 1]
bg_color = self.background(sph, rays_d.reshape(-1, 3)) # [N, 3]
elif bg_color is None:
bg_color = 1
image = image + (1 - weights_sum).unsqueeze(-1) * bg_color
image = image.view(*prefix, 3)
depth = depth.view(*prefix)
# tmp: reg loss in mip-nerf 360
# z_vals_shifted = torch.cat([z_vals[..., 1:], sample_dist * torch.ones_like(z_vals[..., :1])], dim=-1)
# mid_zs = (z_vals + z_vals_shifted) / 2 # [N, T]
# loss_dist = (torch.abs(mid_zs.unsqueeze(1) - mid_zs.unsqueeze(2)) * (weights.unsqueeze(1) * weights.unsqueeze(2))).sum() + 1/3 * ((z_vals_shifted - z_vals_shifted) * (weights ** 2)).sum()
return {
'depth': depth,
'image': image,
'weights_sum': weights_sum,
}
def run_cuda(self, rays_o, rays_d, dt_gamma=0, bg_color=None, perturb=False, force_all_rays=False, max_steps=1024, T_thresh=1e-4, **kwargs):
# rays_o, rays_d: [B, N, 3], assumes B == 1
# return: image: [B, N, 3], depth: [B, N]
prefix = rays_o.shape[:-1]
rays_o = rays_o.contiguous().view(-1, 3)
rays_d = rays_d.contiguous().view(-1, 3)
N = rays_o.shape[0] # N = B * N, in fact
device = rays_o.device
# pre-calculate near far
nears, fars = raymarching.near_far_from_aabb(rays_o, rays_d, self.aabb_train if self.training else self.aabb_infer, self.min_near)
# mix background color
if self.bg_radius > 0:
# use the bg model to calculate bg_color
sph = raymarching.sph_from_ray(rays_o, rays_d, self.bg_radius) # [N, 2] in [-1, 1]
bg_color = self.background(sph, rays_d) # [N, 3]
elif bg_color is None:
bg_color = 1
results = {}
if self.training:
# setup counter
counter = self.step_counter[self.local_step % 16]
counter.zero_() # set to 0
self.local_step += 1
xyzs, dirs, deltas, rays = raymarching.march_rays_train(rays_o, rays_d, self.bound, self.density_bitfield, self.cascade, self.grid_size, nears, fars, counter, self.mean_count, perturb, 128, force_all_rays, dt_gamma, max_steps)
#plot_pointcloud(xyzs.reshape(-1, 3).detach().cpu().numpy())
sigmas, rgbs = self(xyzs, dirs)
sigmas = self.density_scale * sigmas
weights_sum, depth, image = raymarching.composite_rays_train(sigmas, rgbs, deltas, rays, T_thresh)
image = image + (1 - weights_sum).unsqueeze(-1) * bg_color
depth = torch.clamp(depth - nears, min=0) / (fars - nears)
image = image.view(*prefix, 3)
depth = depth.view(*prefix)
else:
# allocate outputs
# if use autocast, must init as half so it won't be autocasted and lose reference.
#dtype = torch.half if torch.is_autocast_enabled() else torch.float32
# output should always be float32! only network inference uses half.
dtype = torch.float32
weights_sum = torch.zeros(N, dtype=dtype, device=device)
depth = torch.zeros(N, dtype=dtype, device=device)
image = torch.zeros(N, 3, dtype=dtype, device=device)
n_alive = N
rays_alive = torch.arange(n_alive, dtype=torch.int32, device=device) # [N]
rays_t = nears.clone() # [N]
step = 0
while step < max_steps:
# count alive rays
n_alive = rays_alive.shape[0]
# exit loop
if n_alive <= 0:
break
# decide compact_steps
n_step = max(min(N // n_alive, 8), 1)
xyzs, dirs, deltas = raymarching.march_rays(n_alive, n_step, rays_alive, rays_t, rays_o, rays_d, self.bound, self.density_bitfield, self.cascade, self.grid_size, nears, fars, 128, perturb if step == 0 else False, dt_gamma, max_steps)
sigmas, rgbs = self(xyzs, dirs)
# density_outputs = self.density(xyzs) # [M,], use a dict since it may include extra things, like geo_feat for rgb.
# sigmas = density_outputs['sigma']
# rgbs = self.color(xyzs, dirs, **density_outputs)
sigmas = self.density_scale * sigmas
raymarching.composite_rays(n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, weights_sum, depth, image, T_thresh)
rays_alive = rays_alive[rays_alive >= 0]
#print(f'step = {step}, n_step = {n_step}, n_alive = {n_alive}, xyzs: {xyzs.shape}')
step += n_step
image = image + (1 - weights_sum).unsqueeze(-1) * bg_color
depth = torch.clamp(depth - nears, min=0) / (fars - nears)
image = image.view(*prefix, 3)
depth = depth.view(*prefix)
results['weights_sum'] = weights_sum
results['depth'] = depth
results['image'] = image
return results
@torch.no_grad()
def mark_untrained_grid(self, poses, intrinsic, S=64):
# poses: [B, 4, 4]
# intrinsic: [3, 3]
if not self.cuda_ray:
return
if isinstance(poses, np.ndarray):
poses = torch.from_numpy(poses)
B = poses.shape[0]
fx, fy, cx, cy = intrinsic
X = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
Y = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
Z = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
count = torch.zeros_like(self.density_grid)
poses = poses.to(count.device)
# 5-level loop, forgive me...
for xs in X:
for ys in Y:
for zs in Z:
# construct points
xx, yy, zz = custom_meshgrid(xs, ys, zs)
coords = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1) # [N, 3], in [0, 128)
indices = raymarching.morton3D(coords).long() # [N]
world_xyzs = (2 * coords.float() / (self.grid_size - 1) - 1).unsqueeze(0) # [1, N, 3] in [-1, 1]
# cascading
for cas in range(self.cascade):
bound = min(2 ** cas, self.bound)
half_grid_size = bound / self.grid_size
# scale to current cascade's resolution
cas_world_xyzs = world_xyzs * (bound - half_grid_size)
# split batch to avoid OOM
head = 0
while head < B:
tail = min(head + S, B)
# world2cam transform (poses is c2w, so we need to transpose it. Another transpose is needed for batched matmul, so the final form is without transpose.)
cam_xyzs = cas_world_xyzs - poses[head:tail, :3, 3].unsqueeze(1)
cam_xyzs = cam_xyzs @ poses[head:tail, :3, :3] # [S, N, 3]
# query if point is covered by any camera
mask_z = cam_xyzs[:, :, 2] > 0 # [S, N]
mask_x = torch.abs(cam_xyzs[:, :, 0]) < cx / fx * cam_xyzs[:, :, 2] + half_grid_size * 2
mask_y = torch.abs(cam_xyzs[:, :, 1]) < cy / fy * cam_xyzs[:, :, 2] + half_grid_size * 2
mask = (mask_z & mask_x & mask_y).sum(0).reshape(-1) # [N]
# update count
count[cas, indices] += mask
head += S
# mark untrained grid as -1
self.density_grid[count == 0] = -1
print(f'[mark untrained grid] {(count == 0).sum()} from {self.grid_size ** 3 * self.cascade}')
@torch.no_grad()
def update_extra_state(self, decay=0.95, S=128):
# call before each epoch to update extra states.
if not self.cuda_ray:
return
### update density grid
tmp_grid = - torch.ones_like(self.density_grid)
# full update.
if self.iter_density < 16:
#if True:
X = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
Y = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
Z = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
for xs in X:
for ys in Y:
for zs in Z:
# construct points
xx, yy, zz = custom_meshgrid(xs, ys, zs)
coords = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1) # [N, 3], in [0, 128)
indices = raymarching.morton3D(coords).long() # [N]
xyzs = 2 * coords.float() / (self.grid_size - 1) - 1 # [N, 3] in [-1, 1]
# cascading
for cas in range(self.cascade):
bound = min(2 ** cas, self.bound)
half_grid_size = bound / self.grid_size
# scale to current cascade's resolution
cas_xyzs = xyzs * (bound - half_grid_size)
# add noise in [-hgs, hgs]
cas_xyzs += (torch.rand_like(cas_xyzs) * 2 - 1) * half_grid_size
# query density
sigmas = self.density(cas_xyzs)['sigma'].reshape(-1).detach()
sigmas *= self.density_scale
# assign
tmp_grid[cas, indices] = sigmas
# partial update (half the computation)
# TODO: why no need of maxpool ?
else:
N = self.grid_size ** 3 // 4 # H * H * H / 4
for cas in range(self.cascade):
# random sample some positions
coords = torch.randint(0, self.grid_size, (N, 3), device=self.density_bitfield.device) # [N, 3], in [0, 128)
indices = raymarching.morton3D(coords).long() # [N]
# random sample occupied positions
occ_indices = torch.nonzero(self.density_grid[cas] > 0).squeeze(-1) # [Nz]
rand_mask = torch.randint(0, occ_indices.shape[0], [N], dtype=torch.long, device=self.density_bitfield.device)
occ_indices = occ_indices[rand_mask] # [Nz] --> [N], allow for duplication
occ_coords = raymarching.morton3D_invert(occ_indices) # [N, 3]
# concat
indices = torch.cat([indices, occ_indices], dim=0)
coords = torch.cat([coords, occ_coords], dim=0)
# same below
xyzs = 2 * coords.float() / (self.grid_size - 1) - 1 # [N, 3] in [-1, 1]
bound = min(2 ** cas, self.bound)
half_grid_size = bound / self.grid_size
# scale to current cascade's resolution
cas_xyzs = xyzs * (bound - half_grid_size)
# add noise in [-hgs, hgs]
cas_xyzs += (torch.rand_like(cas_xyzs) * 2 - 1) * half_grid_size
# query density
sigmas = self.density(cas_xyzs)['sigma'].reshape(-1).detach()
sigmas *= self.density_scale
# assign
tmp_grid[cas, indices] = sigmas
## max-pool on tmp_grid for less aggressive culling [No significant improvement...]
# invalid_mask = tmp_grid < 0
# tmp_grid = F.max_pool3d(tmp_grid.view(self.cascade, 1, self.grid_size, self.grid_size, self.grid_size), kernel_size=3, stride=1, padding=1).view(self.cascade, -1)
# tmp_grid[invalid_mask] = -1
# ema update
valid_mask = (self.density_grid >= 0) & (tmp_grid >= 0)
self.density_grid[valid_mask] = torch.maximum(self.density_grid[valid_mask] * decay, tmp_grid[valid_mask])
self.mean_density = torch.mean(self.density_grid.clamp(min=0)).item() # -1 regions are viewed as 0 density.
#self.mean_density = torch.mean(self.density_grid[self.density_grid > 0]).item() # do not count -1 regions
self.iter_density += 1
# convert to bitfield
density_thresh = min(self.mean_density, self.density_thresh)
self.density_bitfield = raymarching.packbits(self.density_grid, density_thresh, self.density_bitfield)
### update step counter
total_step = min(16, self.local_step)
if total_step > 0:
self.mean_count = int(self.step_counter[:total_step, 0].sum().item() / total_step)
self.local_step = 0
#print(f'[density grid] min={self.density_grid.min().item():.4f}, max={self.density_grid.max().item():.4f}, mean={self.mean_density:.4f}, occ_rate={(self.density_grid > 0.01).sum() / (128**3 * self.cascade):.3f} | [step counter] mean={self.mean_count}')
def render(self, rays_o, rays_d, staged=False, max_ray_batch=4096, **kwargs):
# rays_o, rays_d: [B, N, 3], assumes B == 1
# return: pred_rgb: [B, N, 3]
if self.cuda_ray:
_run = self.run_cuda
else:
_run = self.run
results = _run(rays_o, rays_d, **kwargs)
return results
class _trunc_exp(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32) # cast to float32
def forward(ctx, x):
ctx.save_for_backward(x)
return torch.exp(x)
@staticmethod
@custom_bwd
def backward(ctx, g):
x = ctx.saved_tensors[0]
return g * torch.exp(x.clamp(-15, 15))
trunc_exp = _trunc_exp.apply
class NGPNetwork(NGPRenderer):
def __init__(self,
num_layers=2,
hidden_dim=64,
geo_feat_dim=15,
num_layers_color=3,
hidden_dim_color=64,
bound=0.5,
max_resolution=128,
base_resolution=16,
n_levels=16,
**kwargs
):
super().__init__(bound, **kwargs)
# sigma network
self.num_layers = num_layers
self.hidden_dim = hidden_dim
self.geo_feat_dim = geo_feat_dim
self.bound = bound
log2_hashmap_size = 19
n_features_per_level = 2
per_level_scale = np.exp2(np.log2(max_resolution / base_resolution) / (n_levels - 1))
self.encoder = tcnn.Encoding(
n_input_dims=3,
encoding_config={
"otype": "HashGrid",
"n_levels": n_levels,
"n_features_per_level": n_features_per_level,
"log2_hashmap_size": log2_hashmap_size,
"base_resolution": base_resolution,
"per_level_scale": per_level_scale,
},
)
self.sigma_net = tcnn.Network(
n_input_dims = n_levels * 2,
n_output_dims=1 + self.geo_feat_dim,
network_config={
"otype": "FullyFusedMLP",
"activation": "ReLU",
"output_activation": "None",
"n_neurons": hidden_dim,
"n_hidden_layers": num_layers - 1,
},
)
# color network
self.num_layers_color = num_layers_color
self.hidden_dim_color = hidden_dim_color
self.encoder_dir = tcnn.Encoding(
n_input_dims=3,
encoding_config={
"otype": "SphericalHarmonics",
"degree": 4,
},
)
self.in_dim_color = self.encoder_dir.n_output_dims + self.geo_feat_dim
self.color_net = tcnn.Network(
n_input_dims = self.in_dim_color,
n_output_dims=3,
network_config={
"otype": "FullyFusedMLP",
"activation": "ReLU",
"output_activation": "None",
"n_neurons": hidden_dim_color,
"n_hidden_layers": num_layers_color - 1,
},
)
self.density_scale, self.density_std = 10.0, 0.25
def forward(self, x, d):
# x: [N, 3], in [-bound, bound]
# d: [N, 3], nomalized in [-1, 1]
# sigma
x_raw = x
x = (x + self.bound) / (2 * self.bound) # to [0, 1]
x = self.encoder(x)
h = self.sigma_net(x)
# sigma = F.relu(h[..., 0])
density = h[..., 0]
# add density bias
dist = torch.norm(x_raw, dim=-1)
density_bias = (1 - dist / self.density_std) * self.density_scale
density = density_bias + density
sigma = F.softplus(density)
geo_feat = h[..., 1:]
# color
d = (d + 1) / 2 # tcnn SH encoding requires inputs to be in [0, 1]
d = self.encoder_dir(d)
# p = torch.zeros_like(geo_feat[..., :1]) # manual input padding
h = torch.cat([d, geo_feat], dim=-1)
h = self.color_net(h)
# sigmoid activation for rgb
color = torch.sigmoid(h)
return sigma, color
def density(self, x):
# x: [N, 3], in [-bound, bound]
x_raw = x
x = (x + self.bound) / (2 * self.bound) # to [0, 1]
x = self.encoder(x)
h = self.sigma_net(x)
# sigma = F.relu(h[..., 0])
density = h[..., 0]
# add density bias
dist = torch.norm(x_raw, dim=-1)
density_bias = (1 - dist / self.density_std) * self.density_scale
density = density_bias + density
sigma = F.softplus(density)
geo_feat = h[..., 1:]
return {
'sigma': sigma,
'geo_feat': geo_feat,
}
# allow masked inference
def color(self, x, d, mask=None, geo_feat=None, **kwargs):
# x: [N, 3] in [-bound, bound]
# mask: [N,], bool, indicates where we actually needs to compute rgb.
x = (x + self.bound) / (2 * self.bound) # to [0, 1]
if mask is not None:
rgbs = torch.zeros(mask.shape[0], 3, dtype=x.dtype, device=x.device) # [N, 3]
# in case of empty mask
if not mask.any():
return rgbs
x = x[mask]
d = d[mask]
geo_feat = geo_feat[mask]
# color
d = (d + 1) / 2 # tcnn SH encoding requires inputs to be in [0, 1]
d = self.encoder_dir(d)
h = torch.cat([d, geo_feat], dim=-1)
h = self.color_net(h)
# sigmoid activation for rgb
h = torch.sigmoid(h)
if mask is not None:
rgbs[mask] = h.to(rgbs.dtype) # fp16 --> fp32
else:
rgbs = h
return rgbs
|