Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
@@ -61,6 +61,9 @@ def load_model(model_choice):
|
|
61 |
flagged_folder = "flagged"
|
62 |
os.makedirs(flagged_folder, exist_ok=True)
|
63 |
|
|
|
|
|
|
|
64 |
def save_interesting_log(smiles, properties, suggested_properties):
|
65 |
"""Save interesting polymer data to a CSV file."""
|
66 |
log_file = os.path.join(flagged_folder, "log.csv")
|
@@ -81,7 +84,6 @@ def save_interesting_log(smiles, properties, suggested_properties):
|
|
81 |
}
|
82 |
writer.writerow(log_data)
|
83 |
|
84 |
-
@spaces.GPU(duration=60)
|
85 |
def generate_graph(CH4, CO2, H2, N2, O2, guidance_scale, num_nodes, repeating_time, model_state, num_chain_steps, fps):
|
86 |
model, device = model_state
|
87 |
|
@@ -106,10 +108,8 @@ def generate_graph(CH4, CO2, H2, N2, O2, guidance_scale, num_nodes, repeating_ti
|
|
106 |
# print('Before generation, move model to', device)
|
107 |
# return generated_molecule, img_list
|
108 |
# generated_molecule, img_list = generate_func()
|
109 |
-
|
110 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
111 |
model.to(device)
|
112 |
-
print('Before generation, move model to', device)
|
113 |
generated_molecule, img_list = model.generate(properties, device=device, guide_scale=guidance_scale, num_nodes=num_nodes, number_chain_steps=num_chain_steps)
|
114 |
|
115 |
# Create GIF if img_list is available
|
@@ -182,6 +182,7 @@ def numpy_to_python(obj):
|
|
182 |
else:
|
183 |
return obj
|
184 |
|
|
|
185 |
def on_generate(CH4, CO2, H2, N2, O2, guidance_scale, num_nodes, repeating_time, model_state, num_chain_steps, fps):
|
186 |
result = generate_graph(CH4, CO2, H2, N2, O2, guidance_scale, num_nodes, repeating_time, model_state, num_chain_steps, fps)
|
187 |
# Check if the generation was successful
|
|
|
61 |
flagged_folder = "flagged"
|
62 |
os.makedirs(flagged_folder, exist_ok=True)
|
63 |
|
64 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
65 |
+
# model.to(device)
|
66 |
+
|
67 |
def save_interesting_log(smiles, properties, suggested_properties):
|
68 |
"""Save interesting polymer data to a CSV file."""
|
69 |
log_file = os.path.join(flagged_folder, "log.csv")
|
|
|
84 |
}
|
85 |
writer.writerow(log_data)
|
86 |
|
|
|
87 |
def generate_graph(CH4, CO2, H2, N2, O2, guidance_scale, num_nodes, repeating_time, model_state, num_chain_steps, fps):
|
88 |
model, device = model_state
|
89 |
|
|
|
108 |
# print('Before generation, move model to', device)
|
109 |
# return generated_molecule, img_list
|
110 |
# generated_molecule, img_list = generate_func()
|
111 |
+
# print('Before generation, move model to', device)
|
|
|
112 |
model.to(device)
|
|
|
113 |
generated_molecule, img_list = model.generate(properties, device=device, guide_scale=guidance_scale, num_nodes=num_nodes, number_chain_steps=num_chain_steps)
|
114 |
|
115 |
# Create GIF if img_list is available
|
|
|
182 |
else:
|
183 |
return obj
|
184 |
|
185 |
+
@spaces.GPU(duration=60)
|
186 |
def on_generate(CH4, CO2, H2, N2, O2, guidance_scale, num_nodes, repeating_time, model_state, num_chain_steps, fps):
|
187 |
result = generate_graph(CH4, CO2, H2, N2, O2, guidance_scale, num_nodes, repeating_time, model_state, num_chain_steps, fps)
|
188 |
# Check if the generation was successful
|