Update graph_decoder/transformer.py
Browse files- graph_decoder/transformer.py +33 -2
graph_decoder/transformer.py
CHANGED
@@ -4,6 +4,38 @@ from .layers import Attention, MLP
|
|
4 |
from .conditions import TimestepEmbedder, ConditionEmbedder
|
5 |
# from .diffusion_utils import PlaceHolder
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
def modulate(x, shift, scale):
|
8 |
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
9 |
|
@@ -98,8 +130,7 @@ class Transformer(nn.Module):
|
|
98 |
|
99 |
# X: B * N * dx, E: B * N * N * de
|
100 |
X, E = self.output_layer(X, X_in, E_in, c, t, node_mask)
|
101 |
-
|
102 |
-
return X, E
|
103 |
|
104 |
class Block(nn.Module):
|
105 |
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs):
|
|
|
4 |
from .conditions import TimestepEmbedder, ConditionEmbedder
|
5 |
# from .diffusion_utils import PlaceHolder
|
6 |
|
7 |
+
#### graph utils
|
8 |
+
class PlaceHolder:
|
9 |
+
def __init__(self, X, E, y):
|
10 |
+
self.X = X
|
11 |
+
self.E = E
|
12 |
+
self.y = y
|
13 |
+
|
14 |
+
def type_as(self, x: torch.Tensor, categorical: bool = False):
|
15 |
+
"""Changes the device and dtype of X, E, y."""
|
16 |
+
self.X = self.X.type_as(x)
|
17 |
+
self.E = self.E.type_as(x)
|
18 |
+
if categorical:
|
19 |
+
self.y = self.y.type_as(x)
|
20 |
+
return self
|
21 |
+
|
22 |
+
def mask(self, node_mask, collapse=False):
|
23 |
+
x_mask = node_mask.unsqueeze(-1) # bs, n, 1
|
24 |
+
e_mask1 = x_mask.unsqueeze(2) # bs, n, 1, 1
|
25 |
+
e_mask2 = x_mask.unsqueeze(1) # bs, 1, n, 1
|
26 |
+
|
27 |
+
if collapse:
|
28 |
+
self.X = torch.argmax(self.X, dim=-1)
|
29 |
+
self.E = torch.argmax(self.E, dim=-1)
|
30 |
+
|
31 |
+
self.X[node_mask == 0] = -1
|
32 |
+
self.E[(e_mask1 * e_mask2).squeeze(-1) == 0] = -1
|
33 |
+
else:
|
34 |
+
self.X = self.X * x_mask
|
35 |
+
self.E = self.E * e_mask1 * e_mask2
|
36 |
+
assert torch.allclose(self.E, torch.transpose(self.E, 1, 2))
|
37 |
+
return self
|
38 |
+
|
39 |
def modulate(x, shift, scale):
|
40 |
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
41 |
|
|
|
130 |
|
131 |
# X: B * N * dx, E: B * N * N * de
|
132 |
X, E = self.output_layer(X, X_in, E_in, c, t, node_mask)
|
133 |
+
return PlaceHolder(X=X, E=E, y=None).mask(node_mask)
|
|
|
134 |
|
135 |
class Block(nn.Module):
|
136 |
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs):
|