Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
@@ -5,375 +5,22 @@ import torch.nn as nn
|
|
5 |
import random
|
6 |
from rdkit import Chem
|
7 |
from rdkit.Chem import Draw
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
import os
|
12 |
-
import yaml
|
13 |
-
import json
|
14 |
-
|
15 |
-
import torch.nn.functional as F
|
16 |
-
from graph_decoder import diffusion_utils as utils
|
17 |
-
from graph_decoder.molecule_utils import graph_to_smiles, check_valid
|
18 |
-
from graph_decoder.transformer import Transformer
|
19 |
-
from graph_decoder.visualize_utils import MolecularVisualization
|
20 |
-
|
21 |
-
class GraphDiT(nn.Module):
|
22 |
-
def __init__(
|
23 |
-
self,
|
24 |
-
model_config_path,
|
25 |
-
data_info_path,
|
26 |
-
model_dtype,
|
27 |
-
):
|
28 |
super().__init__()
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
# input_dims = data_info.input_dims
|
34 |
-
# output_dims = data_info.output_dims
|
35 |
-
# nodes_dist = data_info.nodes_dist
|
36 |
-
# active_index = data_info.active_index
|
37 |
-
|
38 |
-
# self.model_config = dm_cfg
|
39 |
-
# self.data_info = data_info
|
40 |
-
# self.T = dm_cfg.diffusion_steps
|
41 |
-
# self.Xdim = input_dims["X"]
|
42 |
-
# self.Edim = input_dims["E"]
|
43 |
-
# self.ydim = input_dims["y"]
|
44 |
-
# self.Xdim_output = output_dims["X"]
|
45 |
-
# self.Edim_output = output_dims["E"]
|
46 |
-
# self.ydim_output = output_dims["y"]
|
47 |
-
# self.node_dist = nodes_dist
|
48 |
-
# self.active_index = active_index
|
49 |
-
# self.max_n_nodes = data_info.max_n_nodes
|
50 |
-
# self.atom_decoder = data_info.atom_decoder
|
51 |
-
# self.hidden_size = dm_cfg.hidden_size
|
52 |
-
# self.mol_visualizer = MolecularVisualization(self.atom_decoder)
|
53 |
-
|
54 |
-
# self.denoiser = Transformer(
|
55 |
-
# max_n_nodes=self.max_n_nodes,
|
56 |
-
# hidden_size=dm_cfg.hidden_size,
|
57 |
-
# depth=dm_cfg.depth,
|
58 |
-
# num_heads=dm_cfg.num_heads,
|
59 |
-
# mlp_ratio=dm_cfg.mlp_ratio,
|
60 |
-
# drop_condition=dm_cfg.drop_condition,
|
61 |
-
# Xdim=self.Xdim,
|
62 |
-
# Edim=self.Edim,
|
63 |
-
# ydim=self.ydim,
|
64 |
-
# )
|
65 |
-
|
66 |
-
# self.model_dtype = model_dtype
|
67 |
-
# self.noise_schedule = utils.PredefinedNoiseScheduleDiscrete(
|
68 |
-
# dm_cfg.diffusion_noise_schedule, timesteps=dm_cfg.diffusion_steps
|
69 |
-
# )
|
70 |
-
# x_marginals = data_info.node_types.to(self.model_dtype) / torch.sum(
|
71 |
-
# data_info.node_types.to(self.model_dtype)
|
72 |
-
# )
|
73 |
-
# e_marginals = data_info.edge_types.to(self.model_dtype) / torch.sum(
|
74 |
-
# data_info.edge_types.to(self.model_dtype)
|
75 |
-
# )
|
76 |
-
# x_marginals = x_marginals / x_marginals.sum()
|
77 |
-
# e_marginals = e_marginals / e_marginals.sum()
|
78 |
-
|
79 |
-
# xe_conditions = data_info.transition_E.to(self.model_dtype)
|
80 |
-
# xe_conditions = xe_conditions[self.active_index][:, self.active_index]
|
81 |
-
|
82 |
-
# xe_conditions = xe_conditions.sum(dim=1)
|
83 |
-
# ex_conditions = xe_conditions.t()
|
84 |
-
# xe_conditions = xe_conditions / xe_conditions.sum(dim=-1, keepdim=True)
|
85 |
-
# ex_conditions = ex_conditions / ex_conditions.sum(dim=-1, keepdim=True)
|
86 |
-
|
87 |
-
# self.transition_model = utils.MarginalTransition(
|
88 |
-
# x_marginals=x_marginals,
|
89 |
-
# e_marginals=e_marginals,
|
90 |
-
# xe_conditions=xe_conditions,
|
91 |
-
# ex_conditions=ex_conditions,
|
92 |
-
# y_classes=self.ydim_output,
|
93 |
-
# n_nodes=self.max_n_nodes,
|
94 |
-
# )
|
95 |
-
# self.limit_dist = utils.PlaceHolder(X=x_marginals, E=e_marginals, y=None)
|
96 |
-
|
97 |
-
def init_model(self, model_dir):
|
98 |
-
model_file = os.path.join(model_dir, 'model.pt')
|
99 |
-
if os.path.exists(model_file):
|
100 |
-
self.denoiser.load_state_dict(torch.load(model_file, map_location='cpu', weights_only=True))
|
101 |
-
else:
|
102 |
-
raise FileNotFoundError(f"Model file not found: {model_file}")
|
103 |
-
|
104 |
-
def disable_grads(self):
|
105 |
-
self.denoiser.disable_grads()
|
106 |
-
|
107 |
-
def forward(
|
108 |
-
self, x, edge_index, edge_attr, graph_batch, properties, no_label_index
|
109 |
-
):
|
110 |
-
raise ValueError('Not Implement')
|
111 |
-
|
112 |
-
def _forward(self, noisy_data, unconditioned=False):
|
113 |
-
noisy_x, noisy_e, properties = (
|
114 |
-
noisy_data["X_t"].to(self.model_dtype),
|
115 |
-
noisy_data["E_t"].to(self.model_dtype),
|
116 |
-
noisy_data["y_t"].to(self.model_dtype).clone(),
|
117 |
-
)
|
118 |
-
node_mask, timestep = (
|
119 |
-
noisy_data["node_mask"],
|
120 |
-
noisy_data["t"],
|
121 |
-
)
|
122 |
-
|
123 |
-
pred = self.denoiser(
|
124 |
-
noisy_x,
|
125 |
-
noisy_e,
|
126 |
-
node_mask,
|
127 |
-
properties,
|
128 |
-
timestep,
|
129 |
-
unconditioned=unconditioned,
|
130 |
-
)
|
131 |
-
return pred
|
132 |
-
|
133 |
-
def apply_noise(self, X, E, y, node_mask):
|
134 |
-
"""Sample noise and apply it to the data."""
|
135 |
-
|
136 |
-
# Sample a timestep t.
|
137 |
-
# When evaluating, the loss for t=0 is computed separately
|
138 |
-
lowest_t = 0 if self.training else 1
|
139 |
-
t_int = torch.randint(
|
140 |
-
lowest_t, self.T + 1, size=(X.size(0), 1), device=X.device
|
141 |
-
).to(
|
142 |
-
self.model_dtype
|
143 |
-
) # (bs, 1)
|
144 |
-
s_int = t_int - 1
|
145 |
-
|
146 |
-
t_float = t_int / self.T
|
147 |
-
s_float = s_int / self.T
|
148 |
-
|
149 |
-
# beta_t and alpha_s_bar are used for denoising/loss computation
|
150 |
-
beta_t = self.noise_schedule(t_normalized=t_float) # (bs, 1)
|
151 |
-
alpha_s_bar = self.noise_schedule.get_alpha_bar(t_normalized=s_float) # (bs, 1)
|
152 |
-
alpha_t_bar = self.noise_schedule.get_alpha_bar(t_normalized=t_float) # (bs, 1)
|
153 |
-
|
154 |
-
Qtb = self.transition_model.get_Qt_bar(
|
155 |
-
alpha_t_bar, X.device
|
156 |
-
) # (bs, dx_in, dx_out), (bs, de_in, de_out)
|
157 |
-
|
158 |
-
bs, n, d = X.shape
|
159 |
-
X_all = torch.cat([X, E.reshape(bs, n, -1)], dim=-1)
|
160 |
-
prob_all = X_all @ Qtb.X
|
161 |
-
probX = prob_all[:, :, : self.Xdim_output]
|
162 |
-
probE = prob_all[:, :, self.Xdim_output :].reshape(bs, n, n, -1)
|
163 |
-
|
164 |
-
sampled_t = utils.sample_discrete_features(
|
165 |
-
probX=probX, probE=probE, node_mask=node_mask
|
166 |
-
)
|
167 |
-
|
168 |
-
X_t = F.one_hot(sampled_t.X, num_classes=self.Xdim_output)
|
169 |
-
E_t = F.one_hot(sampled_t.E, num_classes=self.Edim_output)
|
170 |
-
assert (X.shape == X_t.shape) and (E.shape == E_t.shape)
|
171 |
-
|
172 |
-
y_t = y
|
173 |
-
z_t = utils.PlaceHolder(X=X_t, E=E_t, y=y_t).type_as(X_t).mask(node_mask)
|
174 |
-
|
175 |
-
noisy_data = {
|
176 |
-
"t_int": t_int,
|
177 |
-
"t": t_float,
|
178 |
-
"beta_t": beta_t,
|
179 |
-
"alpha_s_bar": alpha_s_bar,
|
180 |
-
"alpha_t_bar": alpha_t_bar,
|
181 |
-
"X_t": z_t.X,
|
182 |
-
"E_t": z_t.E,
|
183 |
-
"y_t": z_t.y,
|
184 |
-
"node_mask": node_mask,
|
185 |
-
}
|
186 |
-
return noisy_data
|
187 |
-
|
188 |
-
@torch.no_grad()
|
189 |
-
def generate(
|
190 |
-
self,
|
191 |
-
properties,
|
192 |
-
device,
|
193 |
-
guide_scale=1.,
|
194 |
-
num_nodes=None,
|
195 |
-
number_chain_steps=50,
|
196 |
-
):
|
197 |
-
properties = [float('nan') if x is None else x for x in properties]
|
198 |
-
properties = torch.tensor(properties, dtype=torch.float).reshape(1, -1).to(device)
|
199 |
-
batch_size = properties.size(0)
|
200 |
-
assert batch_size == 1
|
201 |
-
if num_nodes is None:
|
202 |
-
num_nodes = self.node_dist.sample_n(batch_size, device)
|
203 |
-
else:
|
204 |
-
num_nodes = torch.LongTensor([num_nodes]).to(device)
|
205 |
-
|
206 |
-
arange = (
|
207 |
-
torch.arange(self.max_n_nodes, device=device)
|
208 |
-
.unsqueeze(0)
|
209 |
-
.expand(batch_size, -1)
|
210 |
-
)
|
211 |
-
node_mask = arange < num_nodes.unsqueeze(1)
|
212 |
-
|
213 |
-
z_T = utils.sample_discrete_feature_noise(
|
214 |
-
limit_dist=self.limit_dist, node_mask=node_mask
|
215 |
-
)
|
216 |
-
X, E = z_T.X, z_T.E
|
217 |
-
|
218 |
-
assert (E == torch.transpose(E, 1, 2)).all()
|
219 |
-
|
220 |
-
if number_chain_steps > 0:
|
221 |
-
chain_X_size = torch.Size((number_chain_steps, X.size(1)))
|
222 |
-
chain_E_size = torch.Size((number_chain_steps, E.size(1), E.size(2)))
|
223 |
-
chain_X = torch.zeros(chain_X_size)
|
224 |
-
chain_E = torch.zeros(chain_E_size)
|
225 |
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
s_norm = s_array / self.T
|
232 |
-
t_norm = t_array / self.T
|
233 |
|
234 |
-
# Sample z_s
|
235 |
-
sampled_s, discrete_sampled_s = self.sample_p_zs_given_zt(
|
236 |
-
s_norm, t_norm, X, E, y, node_mask, guide_scale, device
|
237 |
-
)
|
238 |
-
X, E, y = sampled_s.X, sampled_s.E, sampled_s.y
|
239 |
-
|
240 |
-
if number_chain_steps > 0:
|
241 |
-
# Save the first keep_chain graphs
|
242 |
-
write_index = (s_int * number_chain_steps) // self.T
|
243 |
-
chain_X[write_index] = discrete_sampled_s.X[:1]
|
244 |
-
chain_E[write_index] = discrete_sampled_s.E[:1]
|
245 |
-
|
246 |
-
# Sample
|
247 |
-
sampled_s = sampled_s.mask(node_mask, collapse=True)
|
248 |
-
X, E, y = sampled_s.X, sampled_s.E, sampled_s.y
|
249 |
-
|
250 |
-
molecule_list = []
|
251 |
-
n = num_nodes[0]
|
252 |
-
atom_types = X[0, :n].cpu()
|
253 |
-
edge_types = E[0, :n, :n].cpu()
|
254 |
-
molecule_list.append([atom_types, edge_types])
|
255 |
-
smiles = graph_to_smiles(molecule_list, self.atom_decoder)[0]
|
256 |
-
|
257 |
-
# Visualize Chains
|
258 |
-
if number_chain_steps > 0:
|
259 |
-
final_X_chain = X[:1]
|
260 |
-
final_E_chain = E[:1]
|
261 |
-
|
262 |
-
chain_X[0] = final_X_chain # Overwrite last frame with the resulting X, E
|
263 |
-
chain_E[0] = final_E_chain
|
264 |
-
|
265 |
-
chain_X = utils.reverse_tensor(chain_X)
|
266 |
-
chain_E = utils.reverse_tensor(chain_E)
|
267 |
-
|
268 |
-
# Repeat last frame to see final sample better
|
269 |
-
chain_X = torch.cat([chain_X, chain_X[-1:].repeat(10, 1)], dim=0)
|
270 |
-
chain_E = torch.cat([chain_E, chain_E[-1:].repeat(10, 1, 1)], dim=0)
|
271 |
-
mol_img_list = self.mol_visualizer.visualize_chain(chain_X.numpy(), chain_E.numpy())
|
272 |
-
else:
|
273 |
-
mol_img_list = []
|
274 |
-
|
275 |
-
return smiles, mol_img_list
|
276 |
-
|
277 |
-
def check_valid(self, smiles):
|
278 |
-
return check_valid(smiles)
|
279 |
-
|
280 |
-
def sample_p_zs_given_zt(
|
281 |
-
self, s, t, X_t, E_t, properties, node_mask, guide_scale, device
|
282 |
-
):
|
283 |
-
"""Samples from zs ~ p(zs | zt). Only used during sampling.
|
284 |
-
if last_step, return the graph prediction as well"""
|
285 |
-
bs, n, _ = X_t.shape
|
286 |
-
beta_t = self.noise_schedule(t_normalized=t) # (bs, 1)
|
287 |
-
alpha_s_bar = self.noise_schedule.get_alpha_bar(t_normalized=s)
|
288 |
-
alpha_t_bar = self.noise_schedule.get_alpha_bar(t_normalized=t)
|
289 |
-
|
290 |
-
# Neural net predictions
|
291 |
-
noisy_data = {
|
292 |
-
"X_t": X_t,
|
293 |
-
"E_t": E_t,
|
294 |
-
"y_t": properties,
|
295 |
-
"t": t,
|
296 |
-
"node_mask": node_mask,
|
297 |
-
}
|
298 |
-
|
299 |
-
def get_prob(noisy_data, unconditioned=False):
|
300 |
-
pred = self._forward(noisy_data, unconditioned=unconditioned)
|
301 |
-
|
302 |
-
# Normalize predictions
|
303 |
-
pred_X = F.softmax(pred.X, dim=-1) # bs, n, d0
|
304 |
-
pred_E = F.softmax(pred.E, dim=-1) # bs, n, n, d0
|
305 |
-
|
306 |
-
# Retrieve transitions matrix
|
307 |
-
Qtb = self.transition_model.get_Qt_bar(alpha_t_bar, device)
|
308 |
-
Qsb = self.transition_model.get_Qt_bar(alpha_s_bar, device)
|
309 |
-
Qt = self.transition_model.get_Qt(beta_t, device)
|
310 |
-
|
311 |
-
Xt_all = torch.cat([X_t, E_t.reshape(bs, n, -1)], dim=-1)
|
312 |
-
predX_all = torch.cat([pred_X, pred_E.reshape(bs, n, -1)], dim=-1)
|
313 |
-
|
314 |
-
unnormalized_probX_all = utils.reverse_diffusion(
|
315 |
-
predX_0=predX_all, X_t=Xt_all, Qt=Qt.X, Qsb=Qsb.X, Qtb=Qtb.X
|
316 |
-
)
|
317 |
-
|
318 |
-
unnormalized_prob_X = unnormalized_probX_all[:, :, : self.Xdim_output]
|
319 |
-
unnormalized_prob_E = unnormalized_probX_all[
|
320 |
-
:, :, self.Xdim_output :
|
321 |
-
].reshape(bs, n * n, -1)
|
322 |
-
|
323 |
-
unnormalized_prob_X[torch.sum(unnormalized_prob_X, dim=-1) == 0] = 1e-5
|
324 |
-
unnormalized_prob_E[torch.sum(unnormalized_prob_E, dim=-1) == 0] = 1e-5
|
325 |
-
|
326 |
-
prob_X = unnormalized_prob_X / torch.sum(
|
327 |
-
unnormalized_prob_X, dim=-1, keepdim=True
|
328 |
-
) # bs, n, d_t-1
|
329 |
-
prob_E = unnormalized_prob_E / torch.sum(
|
330 |
-
unnormalized_prob_E, dim=-1, keepdim=True
|
331 |
-
) # bs, n, d_t-1
|
332 |
-
prob_E = prob_E.reshape(bs, n, n, pred_E.shape[-1])
|
333 |
-
|
334 |
-
return prob_X, prob_E
|
335 |
-
|
336 |
-
prob_X, prob_E = get_prob(noisy_data)
|
337 |
-
|
338 |
-
### Guidance
|
339 |
-
if guide_scale != 1:
|
340 |
-
uncon_prob_X, uncon_prob_E = get_prob(
|
341 |
-
noisy_data, unconditioned=True
|
342 |
-
)
|
343 |
-
prob_X = (
|
344 |
-
uncon_prob_X
|
345 |
-
* (prob_X / uncon_prob_X.clamp_min(1e-5)) ** guide_scale
|
346 |
-
)
|
347 |
-
prob_E = (
|
348 |
-
uncon_prob_E
|
349 |
-
* (prob_E / uncon_prob_E.clamp_min(1e-5)) ** guide_scale
|
350 |
-
)
|
351 |
-
prob_X = prob_X / prob_X.sum(dim=-1, keepdim=True).clamp_min(1e-5)
|
352 |
-
prob_E = prob_E / prob_E.sum(dim=-1, keepdim=True).clamp_min(1e-5)
|
353 |
-
|
354 |
-
# assert ((prob_X.sum(dim=-1) - 1).abs() < 1e-3).all()
|
355 |
-
# assert ((prob_E.sum(dim=-1) - 1).abs() < 1e-3).all()
|
356 |
-
|
357 |
-
sampled_s = utils.sample_discrete_features(
|
358 |
-
prob_X, prob_E, node_mask=node_mask, step=s[0, 0].item()
|
359 |
-
)
|
360 |
-
|
361 |
-
X_s = F.one_hot(sampled_s.X, num_classes=self.Xdim_output).to(self.model_dtype)
|
362 |
-
E_s = F.one_hot(sampled_s.E, num_classes=self.Edim_output).to(self.model_dtype)
|
363 |
-
|
364 |
-
assert (E_s == torch.transpose(E_s, 1, 2)).all()
|
365 |
-
assert (X_t.shape == X_s.shape) and (E_t.shape == E_s.shape)
|
366 |
-
|
367 |
-
out_one_hot = utils.PlaceHolder(X=X_s, E=E_s, y=properties)
|
368 |
-
out_discrete = utils.PlaceHolder(X=X_s, E=E_s, y=properties)
|
369 |
-
|
370 |
-
return out_one_hot.mask(node_mask).type_as(properties), out_discrete.mask(
|
371 |
-
node_mask, collapse=True
|
372 |
-
).type_as(properties)
|
373 |
-
|
374 |
-
|
375 |
-
#####
|
376 |
-
# from graph_decoder.diffusion_model import GraphDiT
|
377 |
def load_graph_decoder(path='model_labeled'):
|
378 |
model = GraphDiT(
|
379 |
model_config_path=f"{path}/config.yaml",
|
@@ -384,7 +31,6 @@ def load_graph_decoder(path='model_labeled'):
|
|
384 |
# model.disable_grads()
|
385 |
return model
|
386 |
|
387 |
-
|
388 |
ATOM_SYMBOLS = ['C', 'N', 'O', 'H']
|
389 |
|
390 |
def generate_random_smiles(length=10):
|
|
|
5 |
import random
|
6 |
from rdkit import Chem
|
7 |
from rdkit.Chem import Draw
|
8 |
+
from graph_decoder.diffusion_model import GraphDiT
|
9 |
|
10 |
+
class RandomPolymerGenerator(nn.Module):
|
11 |
+
def __init__(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
super().__init__()
|
13 |
+
self.fc1 = nn.Linear(5, 64)
|
14 |
+
self.fc2 = nn.Linear(64, 128)
|
15 |
+
self.fc3 = nn.Linear(128, 256)
|
16 |
+
self.fc4 = nn.Linear(256, 100) # Output size set to 100 for simplicity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
def forward(self, x):
|
19 |
+
x = torch.relu(self.fc1(x))
|
20 |
+
x = torch.relu(self.fc2(x))
|
21 |
+
x = torch.relu(self.fc3(x))
|
22 |
+
return torch.sigmoid(self.fc4(x))
|
|
|
|
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def load_graph_decoder(path='model_labeled'):
|
25 |
model = GraphDiT(
|
26 |
model_config_path=f"{path}/config.yaml",
|
|
|
31 |
# model.disable_grads()
|
32 |
return model
|
33 |
|
|
|
34 |
ATOM_SYMBOLS = ['C', 'N', 'O', 'H']
|
35 |
|
36 |
def generate_random_smiles(length=10):
|