liuganghuggingface commited on
Commit
824a00b
·
verified ·
1 Parent(s): 43637a6

Upload evaluator.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. evaluator.py +151 -0
evaluator.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math, os
2
+ import pickle
3
+ import os.path as op
4
+ import numpy as np
5
+ import pandas as pd
6
+ from joblib import dump, load, Parallel, delayed
7
+ from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
8
+ from sklearn.metrics import mean_absolute_error, roc_auc_score
9
+ from sklearn.base import BaseEstimator
10
+ from tqdm import tqdm
11
+
12
+ from rdkit import Chem
13
+ from rdkit import rdBase
14
+ from rdkit.Chem import AllChem
15
+ from rdkit import DataStructs
16
+ from rdkit.Chem import rdMolDescriptors
17
+ rdBase.DisableLog('rdApp.error')
18
+
19
+ def process_smiles(smiles):
20
+ mol = Chem.MolFromSmiles(smiles)
21
+ if mol is not None:
22
+ return Evaluator.fingerprints_from_mol(mol), 1
23
+ return np.zeros((1, 2048)), 0
24
+
25
+ class Evaluator():
26
+ """Scores based on an ECFP classifier."""
27
+ def __init__(self, model_path, task_name, n_jobs=2):
28
+ self.n_jobs = n_jobs
29
+ task_type = 'regression'
30
+ self.task_name = task_name
31
+ self.task_type = task_type
32
+ self.model_path = model_path
33
+ self.metric_func = roc_auc_score if 'classification' in self.task_type else mean_absolute_error
34
+ self.model = load(model_path)
35
+
36
+ def __call__(self, smiles_list):
37
+ fps = []
38
+ mask = []
39
+ for i,smiles in enumerate(smiles_list):
40
+ mol = Chem.MolFromSmiles(smiles)
41
+ mask.append( int(mol is not None) )
42
+ fp = Evaluator.fingerprints_from_mol(mol) if mol else np.zeros((1, 2048))
43
+ fps.append(fp)
44
+
45
+ fps = np.concatenate(fps, axis=0)
46
+ if 'classification' in self.task_type:
47
+ scores = self.model.predict_proba(fps)[:, 1]
48
+ else:
49
+ scores = self.model.predict(fps)
50
+ scores = scores * np.array(mask)
51
+ return np.float32(scores)
52
+
53
+ @classmethod
54
+ def fingerprints_from_mol(cls, mol): # use ECFP4
55
+ features_vec = AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=2048)
56
+ features = np.zeros((1,))
57
+ DataStructs.ConvertToNumpyArray(features_vec, features)
58
+ return features.reshape(1, -1)
59
+
60
+ ###### SAS Score ######
61
+ _fscores = None
62
+
63
+ def readFragmentScores(name='fpscores'):
64
+ import gzip
65
+ global _fscores
66
+ # generate the full path filename:
67
+ if name == "fpscores":
68
+ name = op.join(op.dirname(__file__), name)
69
+ data = pickle.load(gzip.open('%s.pkl.gz' % name))
70
+ outDict = {}
71
+ for i in data:
72
+ for j in range(1, len(i)):
73
+ outDict[i[j]] = float(i[0])
74
+ _fscores = outDict
75
+
76
+ def numBridgeheadsAndSpiro(mol, ri=None):
77
+ nSpiro = rdMolDescriptors.CalcNumSpiroAtoms(mol)
78
+ nBridgehead = rdMolDescriptors.CalcNumBridgeheadAtoms(mol)
79
+ return nBridgehead, nSpiro
80
+
81
+ def calculateSAS(smiles_list):
82
+ scores = []
83
+ for i, smiles in enumerate(smiles_list):
84
+ mol = Chem.MolFromSmiles(smiles)
85
+ score = calculateScore(mol)
86
+ scores.append(score)
87
+ return np.float32(scores)
88
+
89
+ def calculateScore(m):
90
+ if _fscores is None:
91
+ readFragmentScores()
92
+
93
+ # fragment score
94
+ fp = rdMolDescriptors.GetMorganFingerprint(m,
95
+ 2) # <- 2 is the *radius* of the circular fingerprint
96
+ fps = fp.GetNonzeroElements()
97
+ score1 = 0.
98
+ nf = 0
99
+ for bitId, v in fps.items():
100
+ nf += v
101
+ sfp = bitId
102
+ score1 += _fscores.get(sfp, -4) * v
103
+ score1 /= nf
104
+
105
+ # features score
106
+ nAtoms = m.GetNumAtoms()
107
+ nChiralCenters = len(Chem.FindMolChiralCenters(m, includeUnassigned=True))
108
+ ri = m.GetRingInfo()
109
+ nBridgeheads, nSpiro = numBridgeheadsAndSpiro(m, ri)
110
+ nMacrocycles = 0
111
+ for x in ri.AtomRings():
112
+ if len(x) > 8:
113
+ nMacrocycles += 1
114
+
115
+ sizePenalty = nAtoms**1.005 - nAtoms
116
+ stereoPenalty = math.log10(nChiralCenters + 1)
117
+ spiroPenalty = math.log10(nSpiro + 1)
118
+ bridgePenalty = math.log10(nBridgeheads + 1)
119
+ macrocyclePenalty = 0.
120
+ # ---------------------------------------
121
+ # This differs from the paper, which defines:
122
+ # macrocyclePenalty = math.log10(nMacrocycles+1)
123
+ # This form generates better results when 2 or more macrocycles are present
124
+ if nMacrocycles > 0:
125
+ macrocyclePenalty = math.log10(2)
126
+
127
+ score2 = 0. - sizePenalty - stereoPenalty - spiroPenalty - bridgePenalty - macrocyclePenalty
128
+
129
+ # correction for the fingerprint density
130
+ # not in the original publication, added in version 1.1
131
+ # to make highly symmetrical molecules easier to synthetise
132
+ score3 = 0.
133
+ if nAtoms > len(fps):
134
+ score3 = math.log(float(nAtoms) / len(fps)) * .5
135
+
136
+ sascore = score1 + score2 + score3
137
+
138
+ # need to transform "raw" value into scale between 1 and 10
139
+ min = -4.0
140
+ max = 2.5
141
+ sascore = 11. - (sascore - min + 1) / (max - min) * 9.
142
+ # smooth the 10-end
143
+ if sascore > 8.:
144
+ sascore = 8. + math.log(sascore + 1. - 9.)
145
+ if sascore > 10.:
146
+ sascore = 10.0
147
+ elif sascore < 1.:
148
+ sascore = 1.0
149
+
150
+ return sascore
151
+