Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
@@ -81,7 +81,6 @@ def save_interesting_log(smiles, properties, suggested_properties):
|
|
81 |
}
|
82 |
writer.writerow(log_data)
|
83 |
|
84 |
-
@spaces.GPU
|
85 |
def generate_graph(CH4, CO2, H2, N2, O2, guidance_scale, num_nodes, repeating_time, model_state, num_chain_steps, fps):
|
86 |
model, device = model_state
|
87 |
|
@@ -99,61 +98,54 @@ def generate_graph(CH4, CO2, H2, N2, O2, guidance_scale, num_nodes, repeating_ti
|
|
99 |
num_nodes = None if num_nodes == 0 else num_nodes
|
100 |
|
101 |
for _ in range(repeating_time):
|
102 |
-
try:
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
# Evaluate the generated molecule
|
130 |
-
suggested_properties = {}
|
131 |
-
for prop, evaluator in evaluators.items():
|
132 |
-
suggested_properties[prop] = evaluator([standardized_smiles])[0]
|
133 |
-
|
134 |
-
suggested_properties_text = "\n".join([f"**Suggested {prop}:** {value:.2f}" for prop, value in suggested_properties.items()])
|
135 |
-
|
136 |
-
return (
|
137 |
-
f"**Generated polymer SMILES:** `{standardized_smiles}`\n\n"
|
138 |
-
f"**{nan_message}**\n\n"
|
139 |
-
f"**{novelty_status}**\n\n"
|
140 |
-
f"**Suggested Properties:**\n{suggested_properties_text}",
|
141 |
-
img,
|
142 |
-
gif_path,
|
143 |
-
properties, # Add this
|
144 |
-
suggested_properties # Add this
|
145 |
-
)
|
146 |
-
else:
|
147 |
return (
|
148 |
-
f"**
|
149 |
-
|
|
|
|
|
|
|
150 |
gif_path,
|
151 |
-
properties,
|
152 |
-
|
153 |
)
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
return f"**Generation failed:** Could not generate a valid molecule after {repeating_time} attempts.\n\n**{nan_message}**", None, None
|
159 |
|
@@ -180,6 +172,7 @@ def numpy_to_python(obj):
|
|
180 |
else:
|
181 |
return obj
|
182 |
|
|
|
183 |
def on_generate(CH4, CO2, H2, N2, O2, guidance_scale, num_nodes, repeating_time, model_state, num_chain_steps, fps):
|
184 |
result = generate_graph(CH4, CO2, H2, N2, O2, guidance_scale, num_nodes, repeating_time, model_state, num_chain_steps, fps)
|
185 |
# Check if the generation was successful
|
@@ -276,7 +269,7 @@ with gr.Blocks(title="Polymer Design with GraphDiT") as iface:
|
|
276 |
```
|
277 |
""")
|
278 |
|
279 |
-
model_state = gr.State(lambda: load_model("
|
280 |
|
281 |
with gr.Row():
|
282 |
CH4_input = gr.Slider(0, property_ranges['CH4'][1], value=2.5, label=f"CH₄ (Barrier) [0-{property_ranges['CH4'][1]:.1f}]")
|
|
|
81 |
}
|
82 |
writer.writerow(log_data)
|
83 |
|
|
|
84 |
def generate_graph(CH4, CO2, H2, N2, O2, guidance_scale, num_nodes, repeating_time, model_state, num_chain_steps, fps):
|
85 |
model, device = model_state
|
86 |
|
|
|
98 |
num_nodes = None if num_nodes == 0 else num_nodes
|
99 |
|
100 |
for _ in range(repeating_time):
|
101 |
+
# try:
|
102 |
+
model.to(device)
|
103 |
+
generated_molecule, img_list = model.generate(properties, device=device, guide_scale=guidance_scale, num_nodes=num_nodes, number_chain_steps=num_chain_steps)
|
104 |
+
|
105 |
+
# Create GIF if img_list is available
|
106 |
+
gif_path = None
|
107 |
+
if img_list and len(img_list) > 0:
|
108 |
+
imgs = [np.array(pil_img) for pil_img in img_list]
|
109 |
+
imgs.extend([imgs[-1]] * 10)
|
110 |
+
gif_path = os.path.join(temp_dir, f"polymer_gen_{random.randint(0, 999999)}.gif")
|
111 |
+
imageio.mimsave(gif_path, imgs, format='GIF', fps=fps, loop=0)
|
112 |
+
|
113 |
+
if generated_molecule is not None:
|
114 |
+
mol = Chem.MolFromSmiles(generated_molecule)
|
115 |
+
if mol is not None:
|
116 |
+
standardized_smiles = Chem.MolToSmiles(mol, isomericSmiles=True)
|
117 |
+
is_novel = standardized_smiles not in knwon_smiles['SMILES'].values
|
118 |
+
novelty_status = "Novel (Not in Labeled Set)" if is_novel else "Not Novel (Exists in Labeled Set)"
|
119 |
+
img = Draw.MolToImage(mol)
|
120 |
+
|
121 |
+
# Evaluate the generated molecule
|
122 |
+
suggested_properties = {}
|
123 |
+
for prop, evaluator in evaluators.items():
|
124 |
+
suggested_properties[prop] = evaluator([standardized_smiles])[0]
|
125 |
+
|
126 |
+
suggested_properties_text = "\n".join([f"**Suggested {prop}:** {value:.2f}" for prop, value in suggested_properties.items()])
|
127 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
return (
|
129 |
+
f"**Generated polymer SMILES:** `{standardized_smiles}`\n\n"
|
130 |
+
f"**{nan_message}**\n\n"
|
131 |
+
f"**{novelty_status}**\n\n"
|
132 |
+
f"**Suggested Properties:**\n{suggested_properties_text}",
|
133 |
+
img,
|
134 |
gif_path,
|
135 |
+
properties, # Add this
|
136 |
+
suggested_properties # Add this
|
137 |
)
|
138 |
+
else:
|
139 |
+
return (
|
140 |
+
f"**Generation failed:** Could not generate a valid molecule.\n\n**{nan_message}**",
|
141 |
+
None,
|
142 |
+
gif_path,
|
143 |
+
properties,
|
144 |
+
None,
|
145 |
+
)
|
146 |
+
# except Exception as e:
|
147 |
+
# print(f"Error in generation: {e}")
|
148 |
+
# continue
|
149 |
|
150 |
return f"**Generation failed:** Could not generate a valid molecule after {repeating_time} attempts.\n\n**{nan_message}**", None, None
|
151 |
|
|
|
172 |
else:
|
173 |
return obj
|
174 |
|
175 |
+
@spaces.GPU
|
176 |
def on_generate(CH4, CO2, H2, N2, O2, guidance_scale, num_nodes, repeating_time, model_state, num_chain_steps, fps):
|
177 |
result = generate_graph(CH4, CO2, H2, N2, O2, guidance_scale, num_nodes, repeating_time, model_state, num_chain_steps, fps)
|
178 |
# Check if the generation was successful
|
|
|
269 |
```
|
270 |
""")
|
271 |
|
272 |
+
model_state = gr.State(lambda: load_model("model_labeled"))
|
273 |
|
274 |
with gr.Row():
|
275 |
CH4_input = gr.Slider(0, property_ranges['CH4'][1], value=2.5, label=f"CH₄ (Barrier) [0-{property_ranges['CH4'][1]:.1f}]")
|