Update app.py
Browse files
app.py
CHANGED
@@ -17,7 +17,42 @@ from datetime import datetime
|
|
17 |
import json
|
18 |
|
19 |
from evaluator import Evaluator
|
20 |
-
from loader import load_graph_decoder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Load the CSV data
|
23 |
known_labels = pd.read_csv('data/known_labels.csv')
|
|
|
17 |
import json
|
18 |
|
19 |
from evaluator import Evaluator
|
20 |
+
# from loader import load_graph_decoder
|
21 |
+
|
22 |
+
### loader
|
23 |
+
from graph_decoder.diffusion_model import GraphDiT
|
24 |
+
def count_parameters(model):
|
25 |
+
r"""
|
26 |
+
Returns the number of trainable parameters and number of all parameters in the model.
|
27 |
+
"""
|
28 |
+
trainable_params, all_param = 0, 0
|
29 |
+
for param in model.parameters():
|
30 |
+
num_params = param.numel()
|
31 |
+
all_param += num_params
|
32 |
+
if param.requires_grad:
|
33 |
+
trainable_params += num_params
|
34 |
+
|
35 |
+
return trainable_params, all_param
|
36 |
+
|
37 |
+
def load_graph_decoder(path='model_labeled'):
|
38 |
+
model_config_path = f"{path}/config.yaml"
|
39 |
+
data_info_path = f"{path}/data.meta.json"
|
40 |
+
|
41 |
+
model = GraphDiT(
|
42 |
+
model_config_path=model_config_path,
|
43 |
+
data_info_path=data_info_path,
|
44 |
+
# model_dtype=torch.float16,
|
45 |
+
model_dtype=torch.float32,
|
46 |
+
)
|
47 |
+
model.init_model(path)
|
48 |
+
model.disable_grads()
|
49 |
+
|
50 |
+
trainable_params, all_param = count_parameters(model)
|
51 |
+
param_stats = "Loaded Graph DiT from {} trainable params: {:,} || all params: {:,} || trainable%: {:.4f}".format(
|
52 |
+
path, trainable_params, all_param, 100 * trainable_params / all_param
|
53 |
+
)
|
54 |
+
print(param_stats)
|
55 |
+
return model
|
56 |
|
57 |
# Load the CSV data
|
58 |
known_labels = pd.read_csv('data/known_labels.csv')
|