|
import { |
|
eventSource, |
|
event_types, |
|
extension_prompt_types, |
|
extension_prompt_roles, |
|
getCurrentChatId, |
|
getRequestHeaders, |
|
is_send_press, |
|
saveSettingsDebounced, |
|
setExtensionPrompt, |
|
substituteParams, |
|
generateRaw, |
|
substituteParamsExtended, |
|
} from '../../../script.js'; |
|
import { |
|
ModuleWorkerWrapper, |
|
extension_settings, |
|
getContext, |
|
modules, |
|
renderExtensionTemplateAsync, |
|
doExtrasFetch, getApiUrl, |
|
openThirdPartyExtensionMenu, |
|
} from '../../extensions.js'; |
|
import { collapseNewlines, registerDebugFunction } from '../../power-user.js'; |
|
import { SECRET_KEYS, secret_state, writeSecret } from '../../secrets.js'; |
|
import { getDataBankAttachments, getDataBankAttachmentsForSource, getFileAttachment } from '../../chats.js'; |
|
import { debounce, getStringHash as calculateHash, waitUntilCondition, onlyUnique, splitRecursive, trimToStartSentence, trimToEndSentence, escapeHtml } from '../../utils.js'; |
|
import { debounce_timeout } from '../../constants.js'; |
|
import { getSortedEntries } from '../../world-info.js'; |
|
import { textgen_types, textgenerationwebui_settings } from '../../textgen-settings.js'; |
|
import { SlashCommandParser } from '../../slash-commands/SlashCommandParser.js'; |
|
import { SlashCommand } from '../../slash-commands/SlashCommand.js'; |
|
import { ARGUMENT_TYPE, SlashCommandArgument, SlashCommandNamedArgument } from '../../slash-commands/SlashCommandArgument.js'; |
|
import { SlashCommandEnumValue, enumTypes } from '../../slash-commands/SlashCommandEnumValue.js'; |
|
import { slashCommandReturnHelper } from '../../slash-commands/SlashCommandReturnHelper.js'; |
|
import { callGenericPopup, POPUP_RESULT, POPUP_TYPE } from '../../popup.js'; |
|
import { generateWebLlmChatPrompt, isWebLlmSupported } from '../shared.js'; |
|
import { WebLlmVectorProvider } from './webllm.js'; |
|
import { removeReasoningFromString } from '../../reasoning.js'; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const MODULE_NAME = 'vectors'; |
|
|
|
export const EXTENSION_PROMPT_TAG = '3_vectors'; |
|
export const EXTENSION_PROMPT_TAG_DB = '4_vectors_data_bank'; |
|
|
|
|
|
const getBatchSize = () => ['transformers', 'palm', 'ollama'].includes(settings.source) ? 1 : 5; |
|
|
|
const settings = { |
|
|
|
source: 'transformers', |
|
alt_endpoint_url: '', |
|
use_alt_endpoint: false, |
|
include_wi: false, |
|
togetherai_model: 'togethercomputer/m2-bert-80M-32k-retrieval', |
|
openai_model: 'text-embedding-ada-002', |
|
cohere_model: 'embed-english-v3.0', |
|
ollama_model: 'mxbai-embed-large', |
|
ollama_keep: false, |
|
vllm_model: '', |
|
webllm_model: '', |
|
google_model: 'text-embedding-004', |
|
summarize: false, |
|
summarize_sent: false, |
|
summary_source: 'main', |
|
summary_prompt: 'Ignore previous instructions. Summarize the most important parts of the message. Limit yourself to 250 words or less. Your response should include nothing but the summary.', |
|
force_chunk_delimiter: '', |
|
|
|
|
|
enabled_chats: false, |
|
template: 'Past events:\n{{text}}', |
|
depth: 2, |
|
position: extension_prompt_types.IN_PROMPT, |
|
protect: 5, |
|
insert: 3, |
|
query: 2, |
|
message_chunk_size: 400, |
|
score_threshold: 0.25, |
|
|
|
|
|
enabled_files: false, |
|
translate_files: false, |
|
size_threshold: 10, |
|
chunk_size: 5000, |
|
chunk_count: 2, |
|
overlap_percent: 0, |
|
only_custom_boundary: false, |
|
|
|
|
|
size_threshold_db: 5, |
|
chunk_size_db: 2500, |
|
chunk_count_db: 5, |
|
overlap_percent_db: 0, |
|
file_template_db: 'Related information:\n{{text}}', |
|
file_position_db: extension_prompt_types.IN_PROMPT, |
|
file_depth_db: 4, |
|
file_depth_role_db: extension_prompt_roles.SYSTEM, |
|
|
|
|
|
enabled_world_info: false, |
|
enabled_for_all: false, |
|
max_entries: 5, |
|
}; |
|
|
|
const moduleWorker = new ModuleWorkerWrapper(synchronizeChat); |
|
const webllmProvider = new WebLlmVectorProvider(); |
|
const cachedSummaries = new Map(); |
|
const vectorApiRequiresUrl = ['llamacpp', 'vllm', 'ollama', 'koboldcpp']; |
|
|
|
|
|
|
|
|
|
|
|
|
|
function getFileCollectionId(fileUrl) { |
|
return `file_${getStringHash(fileUrl)}`; |
|
} |
|
|
|
async function onVectorizeAllClick() { |
|
try { |
|
if (!settings.enabled_chats) { |
|
return; |
|
} |
|
|
|
const chatId = getCurrentChatId(); |
|
|
|
if (!chatId) { |
|
toastr.info('No chat selected', 'Vectorization aborted'); |
|
return; |
|
} |
|
|
|
|
|
|
|
cachedSummaries.clear(); |
|
|
|
const batchSize = getBatchSize(); |
|
const elapsedLog = []; |
|
let finished = false; |
|
$('#vectorize_progress').show(); |
|
$('#vectorize_progress_percent').text('0'); |
|
$('#vectorize_progress_eta').text('...'); |
|
|
|
while (!finished) { |
|
if (is_send_press) { |
|
toastr.info('Message generation is in progress.', 'Vectorization aborted'); |
|
throw new Error('Message generation is in progress.'); |
|
} |
|
|
|
const startTime = Date.now(); |
|
const remaining = await synchronizeChat(batchSize); |
|
const elapsed = Date.now() - startTime; |
|
elapsedLog.push(elapsed); |
|
finished = remaining <= 0; |
|
|
|
const total = getContext().chat.length; |
|
const processed = total - remaining; |
|
const processedPercent = Math.round((processed / total) * 100); |
|
const lastElapsed = elapsedLog.slice(-5); |
|
const averageElapsed = lastElapsed.reduce((a, b) => a + b, 0) / lastElapsed.length; |
|
const pace = averageElapsed / batchSize; |
|
const remainingTime = Math.round(pace * remaining / 1000); |
|
|
|
$('#vectorize_progress_percent').text(processedPercent); |
|
$('#vectorize_progress_eta').text(remainingTime); |
|
|
|
if (chatId !== getCurrentChatId()) { |
|
throw new Error('Chat changed'); |
|
} |
|
} |
|
} catch (error) { |
|
console.error('Vectors: Failed to vectorize all', error); |
|
} finally { |
|
$('#vectorize_progress').hide(); |
|
} |
|
} |
|
|
|
let syncBlocked = false; |
|
|
|
|
|
|
|
|
|
|
|
function getChunkDelimiters() { |
|
const delimiters = ['\n\n', '\n', ' ', '']; |
|
|
|
if (settings.force_chunk_delimiter) { |
|
delimiters.unshift(settings.force_chunk_delimiter); |
|
} |
|
|
|
return delimiters; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
function splitByChunks(items) { |
|
if (settings.message_chunk_size <= 0) { |
|
return items; |
|
} |
|
|
|
const chunkedItems = []; |
|
|
|
for (const item of items) { |
|
const chunks = splitRecursive(item.text, settings.message_chunk_size, getChunkDelimiters()); |
|
for (const chunk of chunks) { |
|
const chunkedItem = { ...item, text: chunk }; |
|
chunkedItems.push(chunkedItem); |
|
} |
|
} |
|
|
|
return chunkedItems; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
async function summarizeExtra(element) { |
|
try { |
|
const url = new URL(getApiUrl()); |
|
url.pathname = '/api/summarize'; |
|
|
|
const apiResult = await doExtrasFetch(url, { |
|
method: 'POST', |
|
headers: { |
|
'Content-Type': 'application/json', |
|
'Bypass-Tunnel-Reminder': 'bypass', |
|
}, |
|
body: JSON.stringify({ |
|
text: element.text, |
|
params: {}, |
|
}), |
|
}); |
|
|
|
if (apiResult.ok) { |
|
const data = await apiResult.json(); |
|
element.text = data.summary; |
|
} |
|
} |
|
catch (error) { |
|
console.log(error); |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
async function summarizeMain(element) { |
|
element.text = removeReasoningFromString(await generateRaw(element.text, '', false, false, settings.summary_prompt)); |
|
return true; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
async function summarizeWebLLM(element) { |
|
if (!isWebLlmSupported()) { |
|
console.warn('Vectors: WebLLM is not supported'); |
|
return false; |
|
} |
|
|
|
const messages = [{ role: 'system', content: settings.summary_prompt }, { role: 'user', content: element.text }]; |
|
element.text = await generateWebLlmChatPrompt(messages); |
|
|
|
return true; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async function summarize(hashedMessages, endpoint = 'main') { |
|
for (const element of hashedMessages) { |
|
const cachedSummary = cachedSummaries.get(element.hash); |
|
if (!cachedSummary) { |
|
let success = true; |
|
switch (endpoint) { |
|
case 'main': |
|
success = await summarizeMain(element); |
|
break; |
|
case 'extras': |
|
success = await summarizeExtra(element); |
|
break; |
|
case 'webllm': |
|
success = await summarizeWebLLM(element); |
|
break; |
|
default: |
|
console.error('Unsupported endpoint', endpoint); |
|
success = false; |
|
break; |
|
} |
|
if (success) { |
|
cachedSummaries.set(element.hash, element.text); |
|
} else { |
|
break; |
|
} |
|
} else { |
|
element.text = cachedSummary; |
|
} |
|
} |
|
return hashedMessages; |
|
} |
|
|
|
async function synchronizeChat(batchSize = 5) { |
|
if (!settings.enabled_chats) { |
|
return -1; |
|
} |
|
|
|
try { |
|
await waitUntilCondition(() => !syncBlocked && !is_send_press, 1000); |
|
} catch { |
|
console.log('Vectors: Synchronization blocked by another process'); |
|
return -1; |
|
} |
|
|
|
try { |
|
syncBlocked = true; |
|
const context = getContext(); |
|
const chatId = getCurrentChatId(); |
|
|
|
if (!chatId || !Array.isArray(context.chat)) { |
|
console.debug('Vectors: No chat selected'); |
|
return -1; |
|
} |
|
|
|
const hashedMessages = context.chat.filter(x => !x.is_system).map(x => ({ text: String(substituteParams(x.mes)), hash: getStringHash(substituteParams(x.mes)), index: context.chat.indexOf(x) })); |
|
const hashesInCollection = await getSavedHashes(chatId); |
|
|
|
let newVectorItems = hashedMessages.filter(x => !hashesInCollection.includes(x.hash)); |
|
const deletedHashes = hashesInCollection.filter(x => !hashedMessages.some(y => y.hash === x)); |
|
|
|
if (settings.summarize) { |
|
newVectorItems = await summarize(newVectorItems, settings.summary_source); |
|
} |
|
|
|
if (newVectorItems.length > 0) { |
|
const chunkedBatch = splitByChunks(newVectorItems.slice(0, batchSize)); |
|
|
|
console.log(`Vectors: Found ${newVectorItems.length} new items. Processing ${batchSize}...`); |
|
await insertVectorItems(chatId, chunkedBatch); |
|
} |
|
|
|
if (deletedHashes.length > 0) { |
|
await deleteVectorItems(chatId, deletedHashes); |
|
console.log(`Vectors: Deleted ${deletedHashes.length} old hashes`); |
|
} |
|
|
|
return newVectorItems.length - batchSize; |
|
} catch (error) { |
|
|
|
|
|
|
|
|
|
|
|
function getErrorMessage(cause) { |
|
switch (cause) { |
|
case 'api_key_missing': |
|
return 'API key missing. Save it in the "API Connections" panel.'; |
|
case 'api_url_missing': |
|
return 'API URL missing. Save it in the "API Connections" panel.'; |
|
case 'api_model_missing': |
|
return 'Vectorization Source Model is required, but not set.'; |
|
case 'extras_module_missing': |
|
return 'Extras API must provide an "embeddings" module.'; |
|
case 'webllm_not_supported': |
|
return 'WebLLM extension is not installed or the model is not set.'; |
|
default: |
|
return 'Check server console for more details'; |
|
} |
|
} |
|
|
|
console.error('Vectors: Failed to synchronize chat', error); |
|
|
|
const message = getErrorMessage(error.cause); |
|
toastr.error(message, 'Vectorization failed', { preventDuplicates: true }); |
|
return -1; |
|
} finally { |
|
syncBlocked = false; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
const hashCache = new Map(); |
|
|
|
|
|
|
|
|
|
|
|
|
|
function getStringHash(str) { |
|
|
|
if (hashCache.has(str)) { |
|
return hashCache.get(str); |
|
} |
|
|
|
|
|
const hash = calculateHash(str); |
|
|
|
|
|
hashCache.set(str, hash); |
|
|
|
return hash; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
async function processFiles(chat) { |
|
try { |
|
if (!settings.enabled_files) { |
|
return; |
|
} |
|
|
|
const dataBankCollectionIds = await ingestDataBankAttachments(); |
|
|
|
if (dataBankCollectionIds.length) { |
|
const queryText = await getQueryText(chat, 'file'); |
|
await injectDataBankChunks(queryText, dataBankCollectionIds); |
|
} |
|
|
|
for (const message of chat) { |
|
|
|
if (!message?.extra?.file) { |
|
continue; |
|
} |
|
|
|
|
|
const fileText = String(message.mes) |
|
.substring(0, message.extra.fileLength).trim(); |
|
|
|
|
|
const thresholdLength = settings.size_threshold * 1024; |
|
|
|
|
|
if (fileText.length < thresholdLength) { |
|
continue; |
|
} |
|
|
|
message.mes = message.mes.substring(message.extra.fileLength); |
|
|
|
const fileName = message.extra.file.name; |
|
const fileUrl = message.extra.file.url; |
|
const collectionId = getFileCollectionId(fileUrl); |
|
const hashesInCollection = await getSavedHashes(collectionId); |
|
|
|
|
|
if (!hashesInCollection.length) { |
|
await vectorizeFile(fileText, fileName, collectionId, settings.chunk_size, settings.overlap_percent); |
|
} |
|
|
|
const queryText = await getQueryText(chat, 'file'); |
|
const fileChunks = await retrieveFileChunks(queryText, collectionId); |
|
|
|
message.mes = `${fileChunks}\n\n${message.mes}`; |
|
} |
|
} catch (error) { |
|
console.error('Vectors: Failed to retrieve files', error); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
async function ingestDataBankAttachments(source) { |
|
|
|
const dataBank = source ? getDataBankAttachmentsForSource(source, false) : getDataBankAttachments(false); |
|
const dataBankCollectionIds = []; |
|
|
|
for (const file of dataBank) { |
|
const collectionId = getFileCollectionId(file.url); |
|
const hashesInCollection = await getSavedHashes(collectionId); |
|
dataBankCollectionIds.push(collectionId); |
|
|
|
|
|
if (hashesInCollection.length) { |
|
continue; |
|
} |
|
|
|
|
|
const fileText = await getFileAttachment(file.url); |
|
console.log(`Vectors: Retrieved file ${file.name} from Data Bank`); |
|
|
|
const thresholdLength = settings.size_threshold_db * 1024; |
|
|
|
const chunkSize = file.size > thresholdLength ? settings.chunk_size_db : -1; |
|
await vectorizeFile(fileText, file.name, collectionId, chunkSize, settings.overlap_percent_db); |
|
} |
|
|
|
return dataBankCollectionIds; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async function injectDataBankChunks(queryText, collectionIds) { |
|
try { |
|
const queryResults = await queryMultipleCollections(collectionIds, queryText, settings.chunk_count_db, settings.score_threshold); |
|
console.debug(`Vectors: Retrieved ${collectionIds.length} Data Bank collections`, queryResults); |
|
let textResult = ''; |
|
|
|
for (const collectionId in queryResults) { |
|
console.debug(`Vectors: Processing Data Bank collection ${collectionId}`, queryResults[collectionId]); |
|
const metadata = queryResults[collectionId].metadata?.filter(x => x.text)?.sort((a, b) => a.index - b.index)?.map(x => x.text)?.filter(onlyUnique) || []; |
|
textResult += metadata.join('\n') + '\n\n'; |
|
} |
|
|
|
if (!textResult) { |
|
console.debug('Vectors: No Data Bank chunks found'); |
|
return; |
|
} |
|
|
|
const insertedText = substituteParamsExtended(settings.file_template_db, { text: textResult }); |
|
setExtensionPrompt(EXTENSION_PROMPT_TAG_DB, insertedText, settings.file_position_db, settings.file_depth_db, settings.include_wi, settings.file_depth_role_db); |
|
} catch (error) { |
|
console.error('Vectors: Failed to insert Data Bank chunks', error); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async function retrieveFileChunks(queryText, collectionId) { |
|
console.debug(`Vectors: Retrieving file chunks for collection ${collectionId}`, queryText); |
|
const queryResults = await queryCollection(collectionId, queryText, settings.chunk_count); |
|
console.debug(`Vectors: Retrieved ${queryResults.hashes.length} file chunks for collection ${collectionId}`, queryResults); |
|
const metadata = queryResults.metadata.filter(x => x.text).sort((a, b) => a.index - b.index).map(x => x.text).filter(onlyUnique); |
|
const fileText = metadata.join('\n'); |
|
|
|
return fileText; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async function vectorizeFile(fileText, fileName, collectionId, chunkSize, overlapPercent) { |
|
let toast = jQuery(); |
|
|
|
try { |
|
if (settings.translate_files && typeof globalThis.translate === 'function') { |
|
console.log(`Vectors: Translating file ${fileName} to English...`); |
|
const translatedText = await globalThis.translate(fileText, 'en'); |
|
fileText = translatedText; |
|
} |
|
|
|
const batchSize = getBatchSize(); |
|
const toastBody = $('<span>').text('This may take a while. Please wait...'); |
|
toast = toastr.info(toastBody, `Ingesting file ${escapeHtml(fileName)}`, { closeButton: false, escapeHtml: false, timeOut: 0, extendedTimeOut: 0 }); |
|
const overlapSize = Math.round(chunkSize * overlapPercent / 100); |
|
const delimiters = getChunkDelimiters(); |
|
|
|
chunkSize = overlapSize > 0 ? (chunkSize - overlapSize) : chunkSize; |
|
const chunks = settings.only_custom_boundary && settings.force_chunk_delimiter |
|
? fileText.split(settings.force_chunk_delimiter) |
|
: splitRecursive(fileText, chunkSize, delimiters).map((x, y, z) => overlapSize > 0 ? overlapChunks(x, y, z, overlapSize) : x); |
|
console.debug(`Vectors: Split file ${fileName} into ${chunks.length} chunks with ${overlapPercent}% overlap`, chunks); |
|
|
|
const items = chunks.map((chunk, index) => ({ hash: getStringHash(chunk), text: chunk, index: index })); |
|
|
|
for (let i = 0; i < items.length; i += batchSize) { |
|
toastBody.text(`${i}/${items.length} (${Math.round((i / items.length) * 100)}%) chunks processed`); |
|
const chunkedBatch = items.slice(i, i + batchSize); |
|
await insertVectorItems(collectionId, chunkedBatch); |
|
} |
|
|
|
toastr.clear(toast); |
|
console.log(`Vectors: Inserted ${chunks.length} vector items for file ${fileName} into ${collectionId}`); |
|
return true; |
|
} catch (error) { |
|
toastr.clear(toast); |
|
toastr.error(String(error), 'Failed to vectorize file', { preventDuplicates: true }); |
|
console.error('Vectors: Failed to vectorize file', error); |
|
return false; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async function rearrangeChat(chat, _contextSize, _abort, type) { |
|
try { |
|
if (type === 'quiet') { |
|
console.debug('Vectors: Skipping quiet prompt'); |
|
return; |
|
} |
|
|
|
|
|
setExtensionPrompt(EXTENSION_PROMPT_TAG, '', settings.position, settings.depth, settings.include_wi); |
|
setExtensionPrompt(EXTENSION_PROMPT_TAG_DB, '', settings.file_position_db, settings.file_depth_db, settings.include_wi, settings.file_depth_role_db); |
|
|
|
if (settings.enabled_files) { |
|
await processFiles(chat); |
|
} |
|
|
|
if (settings.enabled_world_info) { |
|
await activateWorldInfo(chat); |
|
} |
|
|
|
if (!settings.enabled_chats) { |
|
return; |
|
} |
|
|
|
const chatId = getCurrentChatId(); |
|
|
|
if (!chatId || !Array.isArray(chat)) { |
|
console.debug('Vectors: No chat selected'); |
|
return; |
|
} |
|
|
|
if (chat.length < settings.protect) { |
|
console.debug(`Vectors: Not enough messages to rearrange (less than ${settings.protect})`); |
|
return; |
|
} |
|
|
|
const queryText = await getQueryText(chat, 'chat'); |
|
|
|
if (queryText.length === 0) { |
|
console.debug('Vectors: No text to query'); |
|
return; |
|
} |
|
|
|
|
|
const queryResults = await queryCollection(chatId, queryText, settings.insert); |
|
const queryHashes = queryResults.hashes.filter(onlyUnique); |
|
const queriedMessages = []; |
|
const insertedHashes = new Set(); |
|
const retainMessages = chat.slice(-settings.protect); |
|
|
|
for (const message of chat) { |
|
if (retainMessages.includes(message) || !message.mes) { |
|
continue; |
|
} |
|
const hash = getStringHash(substituteParams(message.mes)); |
|
if (queryHashes.includes(hash) && !insertedHashes.has(hash)) { |
|
queriedMessages.push(message); |
|
insertedHashes.add(hash); |
|
} |
|
} |
|
|
|
|
|
|
|
queriedMessages.sort((a, b) => queryHashes.indexOf(getStringHash(substituteParams(b.mes))) - queryHashes.indexOf(getStringHash(substituteParams(a.mes)))); |
|
|
|
|
|
for (const message of chat) { |
|
if (queriedMessages.includes(message)) { |
|
chat.splice(chat.indexOf(message), 1); |
|
} |
|
} |
|
|
|
if (queriedMessages.length === 0) { |
|
console.debug('Vectors: No relevant messages found'); |
|
return; |
|
} |
|
|
|
|
|
const insertedText = getPromptText(queriedMessages); |
|
setExtensionPrompt(EXTENSION_PROMPT_TAG, insertedText, settings.position, settings.depth, settings.include_wi); |
|
} catch (error) { |
|
toastr.error('Generation interceptor aborted. Check browser console for more details.', 'Vector Storage'); |
|
console.error('Vectors: Failed to rearrange chat', error); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
function getPromptText(queriedMessages) { |
|
const queriedText = queriedMessages.map(x => collapseNewlines(`${x.name}: ${x.mes}`).trim()).join('\n\n'); |
|
console.log('Vectors: relevant past messages found.\n', queriedText); |
|
return substituteParamsExtended(settings.template, { text: queriedText }); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
function overlapChunks(chunk, index, chunks, overlapSize) { |
|
const halfOverlap = Math.floor(overlapSize / 2); |
|
const nextChunk = chunks[index + 1]; |
|
const prevChunk = chunks[index - 1]; |
|
|
|
const nextOverlap = trimToEndSentence(nextChunk?.substring(0, halfOverlap)) || ''; |
|
const prevOverlap = trimToStartSentence(prevChunk?.substring(prevChunk.length - halfOverlap)) || ''; |
|
const overlappedChunk = [prevOverlap, chunk, nextOverlap].filter(x => x).join(' '); |
|
|
|
return overlappedChunk; |
|
} |
|
|
|
window['vectors_rearrangeChat'] = rearrangeChat; |
|
|
|
const onChatEvent = debounce(async () => await moduleWorker.update(), debounce_timeout.relaxed); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async function getQueryText(chat, initiator) { |
|
let hashedMessages = chat |
|
.map(x => ({ text: String(substituteParams(x.mes)), hash: getStringHash(substituteParams(x.mes)), index: chat.indexOf(x) })) |
|
.filter(x => x.text) |
|
.reverse() |
|
.slice(0, settings.query); |
|
|
|
if (initiator === 'chat' && settings.enabled_chats && settings.summarize && settings.summarize_sent) { |
|
hashedMessages = await summarize(hashedMessages, settings.summary_source); |
|
} |
|
|
|
const queryText = hashedMessages.map(x => x.text).join('\n'); |
|
|
|
return collapseNewlines(queryText).trim(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
function getVectorsRequestBody(args = {}) { |
|
const body = Object.assign({}, args); |
|
switch (settings.source) { |
|
case 'extras': |
|
body.extrasUrl = extension_settings.apiUrl; |
|
body.extrasKey = extension_settings.apiKey; |
|
break; |
|
case 'togetherai': |
|
body.model = extension_settings.vectors.togetherai_model; |
|
break; |
|
case 'openai': |
|
body.model = extension_settings.vectors.openai_model; |
|
break; |
|
case 'cohere': |
|
body.model = extension_settings.vectors.cohere_model; |
|
break; |
|
case 'ollama': |
|
body.model = extension_settings.vectors.ollama_model; |
|
body.apiUrl = settings.use_alt_endpoint ? settings.alt_endpoint_url : textgenerationwebui_settings.server_urls[textgen_types.OLLAMA]; |
|
body.keep = !!extension_settings.vectors.ollama_keep; |
|
break; |
|
case 'llamacpp': |
|
body.apiUrl = settings.use_alt_endpoint ? settings.alt_endpoint_url : textgenerationwebui_settings.server_urls[textgen_types.LLAMACPP]; |
|
break; |
|
case 'vllm': |
|
body.apiUrl = settings.use_alt_endpoint ? settings.alt_endpoint_url : textgenerationwebui_settings.server_urls[textgen_types.VLLM]; |
|
body.model = extension_settings.vectors.vllm_model; |
|
break; |
|
case 'webllm': |
|
body.model = extension_settings.vectors.webllm_model; |
|
break; |
|
case 'palm': |
|
body.model = extension_settings.vectors.google_model; |
|
break; |
|
default: |
|
break; |
|
} |
|
return body; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
async function getAdditionalArgs(items) { |
|
const args = {}; |
|
switch (settings.source) { |
|
case 'webllm': |
|
args.embeddings = await createWebLlmEmbeddings(items); |
|
break; |
|
case 'koboldcpp': { |
|
const { embeddings, model } = await createKoboldCppEmbeddings(items); |
|
args.embeddings = embeddings; |
|
args.model = model; |
|
break; |
|
} |
|
} |
|
return args; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
async function getSavedHashes(collectionId) { |
|
const args = await getAdditionalArgs([]); |
|
const response = await fetch('/api/vector/list', { |
|
method: 'POST', |
|
headers: getRequestHeaders(), |
|
body: JSON.stringify({ |
|
...getVectorsRequestBody(args), |
|
collectionId: collectionId, |
|
source: settings.source, |
|
}), |
|
}); |
|
|
|
if (!response.ok) { |
|
throw new Error(`Failed to get saved hashes for collection ${collectionId}`); |
|
} |
|
|
|
const hashes = await response.json(); |
|
return hashes; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async function insertVectorItems(collectionId, items) { |
|
throwIfSourceInvalid(); |
|
|
|
const args = await getAdditionalArgs(items.map(x => x.text)); |
|
const response = await fetch('/api/vector/insert', { |
|
method: 'POST', |
|
headers: getRequestHeaders(), |
|
body: JSON.stringify({ |
|
...getVectorsRequestBody(args), |
|
collectionId: collectionId, |
|
items: items, |
|
source: settings.source, |
|
}), |
|
}); |
|
|
|
if (!response.ok) { |
|
throw new Error(`Failed to insert vector items for collection ${collectionId}`); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
function throwIfSourceInvalid() { |
|
if (settings.source === 'openai' && !secret_state[SECRET_KEYS.OPENAI] || |
|
settings.source === 'palm' && !secret_state[SECRET_KEYS.MAKERSUITE] || |
|
settings.source === 'mistral' && !secret_state[SECRET_KEYS.MISTRALAI] || |
|
settings.source === 'togetherai' && !secret_state[SECRET_KEYS.TOGETHERAI] || |
|
settings.source === 'nomicai' && !secret_state[SECRET_KEYS.NOMICAI] || |
|
settings.source === 'cohere' && !secret_state[SECRET_KEYS.COHERE]) { |
|
throw new Error('Vectors: API key missing', { cause: 'api_key_missing' }); |
|
} |
|
|
|
if (vectorApiRequiresUrl.includes(settings.source) && settings.use_alt_endpoint) { |
|
if (!settings.alt_endpoint_url) { |
|
throw new Error('Vectors: API URL missing', { cause: 'api_url_missing' }); |
|
} |
|
} |
|
else { |
|
if (settings.source === 'ollama' && !textgenerationwebui_settings.server_urls[textgen_types.OLLAMA] || |
|
settings.source === 'vllm' && !textgenerationwebui_settings.server_urls[textgen_types.VLLM] || |
|
settings.source === 'koboldcpp' && !textgenerationwebui_settings.server_urls[textgen_types.KOBOLDCPP] || |
|
settings.source === 'llamacpp' && !textgenerationwebui_settings.server_urls[textgen_types.LLAMACPP]) { |
|
throw new Error('Vectors: API URL missing', { cause: 'api_url_missing' }); |
|
} |
|
} |
|
|
|
if (settings.source === 'ollama' && !settings.ollama_model || settings.source === 'vllm' && !settings.vllm_model) { |
|
throw new Error('Vectors: API model missing', { cause: 'api_model_missing' }); |
|
} |
|
|
|
if (settings.source === 'extras' && !modules.includes('embeddings')) { |
|
throw new Error('Vectors: Embeddings module missing', { cause: 'extras_module_missing' }); |
|
} |
|
|
|
if (settings.source === 'webllm' && (!isWebLlmSupported() || !settings.webllm_model)) { |
|
throw new Error('Vectors: WebLLM is not supported', { cause: 'webllm_not_supported' }); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async function deleteVectorItems(collectionId, hashes) { |
|
const response = await fetch('/api/vector/delete', { |
|
method: 'POST', |
|
headers: getRequestHeaders(), |
|
body: JSON.stringify({ |
|
...getVectorsRequestBody(), |
|
collectionId: collectionId, |
|
hashes: hashes, |
|
source: settings.source, |
|
}), |
|
}); |
|
|
|
if (!response.ok) { |
|
throw new Error(`Failed to delete vector items for collection ${collectionId}`); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async function queryCollection(collectionId, searchText, topK) { |
|
const args = await getAdditionalArgs([searchText]); |
|
const response = await fetch('/api/vector/query', { |
|
method: 'POST', |
|
headers: getRequestHeaders(), |
|
body: JSON.stringify({ |
|
...getVectorsRequestBody(args), |
|
collectionId: collectionId, |
|
searchText: searchText, |
|
topK: topK, |
|
source: settings.source, |
|
threshold: settings.score_threshold, |
|
}), |
|
}); |
|
|
|
if (!response.ok) { |
|
throw new Error(`Failed to query collection ${collectionId}`); |
|
} |
|
|
|
return await response.json(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async function queryMultipleCollections(collectionIds, searchText, topK, threshold) { |
|
const args = await getAdditionalArgs([searchText]); |
|
const response = await fetch('/api/vector/query-multi', { |
|
method: 'POST', |
|
headers: getRequestHeaders(), |
|
body: JSON.stringify({ |
|
...getVectorsRequestBody(args), |
|
collectionIds: collectionIds, |
|
searchText: searchText, |
|
topK: topK, |
|
source: settings.source, |
|
threshold: threshold ?? settings.score_threshold, |
|
}), |
|
}); |
|
|
|
if (!response.ok) { |
|
throw new Error('Failed to query multiple collections'); |
|
} |
|
|
|
return await response.json(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
async function purgeFileVectorIndex(fileUrl) { |
|
try { |
|
if (!settings.enabled_files) { |
|
return; |
|
} |
|
|
|
console.log(`Vectors: Purging file vector index for ${fileUrl}`); |
|
const collectionId = getFileCollectionId(fileUrl); |
|
|
|
const response = await fetch('/api/vector/purge', { |
|
method: 'POST', |
|
headers: getRequestHeaders(), |
|
body: JSON.stringify({ |
|
...getVectorsRequestBody(), |
|
collectionId: collectionId, |
|
}), |
|
}); |
|
|
|
if (!response.ok) { |
|
throw new Error(`Could not delete vector index for collection ${collectionId}`); |
|
} |
|
|
|
console.log(`Vectors: Purged vector index for collection ${collectionId}`); |
|
} catch (error) { |
|
console.error('Vectors: Failed to purge file', error); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
async function purgeVectorIndex(collectionId) { |
|
try { |
|
if (!settings.enabled_chats) { |
|
return true; |
|
} |
|
|
|
const response = await fetch('/api/vector/purge', { |
|
method: 'POST', |
|
headers: getRequestHeaders(), |
|
body: JSON.stringify({ |
|
...getVectorsRequestBody(), |
|
collectionId: collectionId, |
|
}), |
|
}); |
|
|
|
if (!response.ok) { |
|
throw new Error(`Could not delete vector index for collection ${collectionId}`); |
|
} |
|
|
|
console.log(`Vectors: Purged vector index for collection ${collectionId}`); |
|
return true; |
|
} catch (error) { |
|
console.error('Vectors: Failed to purge', error); |
|
return false; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
async function purgeAllVectorIndexes() { |
|
try { |
|
const response = await fetch('/api/vector/purge-all', { |
|
method: 'POST', |
|
headers: getRequestHeaders(), |
|
body: JSON.stringify({ |
|
...getVectorsRequestBody(), |
|
}), |
|
}); |
|
|
|
if (!response.ok) { |
|
throw new Error('Failed to purge all vector indexes'); |
|
} |
|
|
|
console.log('Vectors: Purged all vector indexes'); |
|
toastr.success('All vector indexes purged', 'Purge successful'); |
|
} catch (error) { |
|
console.error('Vectors: Failed to purge all', error); |
|
toastr.error('Failed to purge all vector indexes', 'Purge failed'); |
|
} |
|
} |
|
|
|
function toggleSettings() { |
|
$('#vectors_files_settings').toggle(!!settings.enabled_files); |
|
$('#vectors_chats_settings').toggle(!!settings.enabled_chats); |
|
$('#vectors_world_info_settings').toggle(!!settings.enabled_world_info); |
|
$('#together_vectorsModel').toggle(settings.source === 'togetherai'); |
|
$('#openai_vectorsModel').toggle(settings.source === 'openai'); |
|
$('#cohere_vectorsModel').toggle(settings.source === 'cohere'); |
|
$('#ollama_vectorsModel').toggle(settings.source === 'ollama'); |
|
$('#llamacpp_vectorsModel').toggle(settings.source === 'llamacpp'); |
|
$('#vllm_vectorsModel').toggle(settings.source === 'vllm'); |
|
$('#nomicai_apiKey').toggle(settings.source === 'nomicai'); |
|
$('#webllm_vectorsModel').toggle(settings.source === 'webllm'); |
|
$('#koboldcpp_vectorsModel').toggle(settings.source === 'koboldcpp'); |
|
$('#google_vectorsModel').toggle(settings.source === 'palm'); |
|
$('#vector_altEndpointUrl').toggle(vectorApiRequiresUrl.includes(settings.source)); |
|
if (settings.source === 'webllm') { |
|
loadWebLlmModels(); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async function executeWithWebLlmErrorHandling(func) { |
|
try { |
|
return await func(); |
|
} catch (error) { |
|
console.log('Vectors: Failed to load WebLLM models', error); |
|
if (!(error instanceof Error)) { |
|
return; |
|
} |
|
switch (error.cause) { |
|
case 'webllm-not-available': |
|
toastr.warning('WebLLM is not available. Please install the extension.', 'WebLLM not installed'); |
|
break; |
|
case 'webllm-not-updated': |
|
toastr.warning('The installed extension version does not support embeddings.', 'WebLLM update required'); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
function loadWebLlmModels() { |
|
return executeWithWebLlmErrorHandling(() => { |
|
const models = webllmProvider.getModels(); |
|
$('#vectors_webllm_model').empty(); |
|
for (const model of models) { |
|
$('#vectors_webllm_model').append($('<option>', { value: model.id, text: model.toString() })); |
|
} |
|
if (!settings.webllm_model || !models.some(x => x.id === settings.webllm_model)) { |
|
if (models.length) { |
|
settings.webllm_model = models[0].id; |
|
} |
|
} |
|
$('#vectors_webllm_model').val(settings.webllm_model); |
|
return Promise.resolve(); |
|
}); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
async function createWebLlmEmbeddings(items) { |
|
if (items.length === 0) { |
|
return ({}); |
|
} |
|
return executeWithWebLlmErrorHandling(async () => { |
|
const embeddings = await webllmProvider.embedTexts(items, settings.webllm_model); |
|
const result = ({}); |
|
for (let i = 0; i < items.length; i++) { |
|
result[items[i]] = embeddings[i]; |
|
} |
|
return result; |
|
}); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
async function createKoboldCppEmbeddings(items) { |
|
const response = await fetch('/api/backends/kobold/embed', { |
|
method: 'POST', |
|
headers: getRequestHeaders(), |
|
body: JSON.stringify({ |
|
items: items, |
|
server: settings.use_alt_endpoint ? settings.alt_endpoint_url : textgenerationwebui_settings.server_urls[textgen_types.KOBOLDCPP], |
|
}), |
|
}); |
|
|
|
if (!response.ok) { |
|
throw new Error('Failed to get KoboldCpp embeddings'); |
|
} |
|
|
|
const data = await response.json(); |
|
if (!Array.isArray(data.embeddings) || !data.model || data.embeddings.length !== items.length) { |
|
throw new Error('Invalid response from KoboldCpp embeddings'); |
|
} |
|
|
|
const embeddings = ({}); |
|
for (let i = 0; i < data.embeddings.length; i++) { |
|
if (!Array.isArray(data.embeddings[i]) || data.embeddings[i].length === 0) { |
|
throw new Error('KoboldCpp returned an empty embedding. Reduce the chunk size and/or size threshold and try again.'); |
|
} |
|
|
|
embeddings[items[i]] = data.embeddings[i]; |
|
} |
|
|
|
return { |
|
embeddings: embeddings, |
|
model: data.model, |
|
}; |
|
} |
|
|
|
async function onPurgeClick() { |
|
const chatId = getCurrentChatId(); |
|
if (!chatId) { |
|
toastr.info('No chat selected', 'Purge aborted'); |
|
return; |
|
} |
|
if (await purgeVectorIndex(chatId)) { |
|
toastr.success('Vector index purged', 'Purge successful'); |
|
} else { |
|
toastr.error('Failed to purge vector index', 'Purge failed'); |
|
} |
|
} |
|
|
|
async function onViewStatsClick() { |
|
const chatId = getCurrentChatId(); |
|
if (!chatId) { |
|
toastr.info('No chat selected'); |
|
return; |
|
} |
|
|
|
const hashesInCollection = await getSavedHashes(chatId); |
|
const totalHashes = hashesInCollection.length; |
|
const uniqueHashes = hashesInCollection.filter(onlyUnique).length; |
|
|
|
toastr.info(`Total hashes: <b>${totalHashes}</b><br> |
|
Unique hashes: <b>${uniqueHashes}</b><br><br> |
|
I'll mark collected messages with a green circle.`, |
|
`Stats for chat ${escapeHtml(chatId)}`, |
|
{ timeOut: 10000, escapeHtml: false }, |
|
); |
|
|
|
const chat = getContext().chat; |
|
for (const message of chat) { |
|
if (hashesInCollection.includes(getStringHash(substituteParams(message.mes)))) { |
|
const messageElement = $(`.mes[mesid="${chat.indexOf(message)}"]`); |
|
messageElement.addClass('vectorized'); |
|
} |
|
} |
|
|
|
} |
|
|
|
async function onVectorizeAllFilesClick() { |
|
try { |
|
const dataBank = getDataBankAttachments(); |
|
const chatAttachments = getContext().chat.filter(x => x.extra?.file).map(x => x.extra.file); |
|
const allFiles = [...dataBank, ...chatAttachments]; |
|
|
|
|
|
|
|
|
|
|
|
|
|
function getChunkSize(file) { |
|
if (chatAttachments.includes(file)) { |
|
|
|
const thresholdLength = settings.size_threshold * 1024; |
|
return file.size > thresholdLength ? settings.chunk_size : -1; |
|
} |
|
|
|
if (dataBank.includes(file)) { |
|
|
|
const thresholdLength = settings.size_threshold_db * 1024; |
|
|
|
return file.size > thresholdLength ? settings.chunk_size_db : -1; |
|
} |
|
|
|
return -1; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
function getOverlapPercent(file) { |
|
if (chatAttachments.includes(file)) { |
|
return settings.overlap_percent; |
|
} |
|
|
|
if (dataBank.includes(file)) { |
|
return settings.overlap_percent_db; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
let allSuccess = true; |
|
|
|
for (const file of allFiles) { |
|
const text = await getFileAttachment(file.url); |
|
const collectionId = getFileCollectionId(file.url); |
|
const hashes = await getSavedHashes(collectionId); |
|
|
|
if (hashes.length) { |
|
console.log(`Vectors: File ${file.name} is already vectorized`); |
|
continue; |
|
} |
|
|
|
const chunkSize = getChunkSize(file); |
|
const overlapPercent = getOverlapPercent(file); |
|
const result = await vectorizeFile(text, file.name, collectionId, chunkSize, overlapPercent); |
|
|
|
if (!result) { |
|
allSuccess = false; |
|
} |
|
} |
|
|
|
if (allSuccess) { |
|
toastr.success('All files vectorized', 'Vectorization successful'); |
|
} else { |
|
toastr.warning('Some files failed to vectorize. Check browser console for more details.', 'Vector Storage'); |
|
} |
|
} catch (error) { |
|
console.error('Vectors: Failed to vectorize all files', error); |
|
toastr.error('Failed to vectorize all files', 'Vectorization failed'); |
|
} |
|
} |
|
|
|
async function onPurgeFilesClick() { |
|
try { |
|
const dataBank = getDataBankAttachments(); |
|
const chatAttachments = getContext().chat.filter(x => x.extra?.file).map(x => x.extra.file); |
|
const allFiles = [...dataBank, ...chatAttachments]; |
|
|
|
for (const file of allFiles) { |
|
await purgeFileVectorIndex(file.url); |
|
} |
|
|
|
toastr.success('All files purged', 'Purge successful'); |
|
} catch (error) { |
|
console.error('Vectors: Failed to purge all files', error); |
|
toastr.error('Failed to purge all files', 'Purge failed'); |
|
} |
|
} |
|
|
|
async function activateWorldInfo(chat) { |
|
if (!settings.enabled_world_info) { |
|
console.debug('Vectors: Disabled for World Info'); |
|
return; |
|
} |
|
|
|
const entries = await getSortedEntries(); |
|
|
|
if (!Array.isArray(entries) || entries.length === 0) { |
|
console.debug('Vectors: No WI entries found'); |
|
return; |
|
} |
|
|
|
|
|
const groupedEntries = {}; |
|
|
|
for (const entry of entries) { |
|
|
|
if (!entry.world) { |
|
console.debug('Vectors: Skipped orphaned WI entry', entry); |
|
continue; |
|
} |
|
|
|
|
|
if (entry.disable) { |
|
console.debug('Vectors: Skipped disabled WI entry', entry); |
|
continue; |
|
} |
|
|
|
|
|
if (!entry.content) { |
|
console.debug('Vectors: Skipped WI entry without content', entry); |
|
continue; |
|
} |
|
|
|
|
|
if (!entry.vectorized && !settings.enabled_for_all) { |
|
console.debug('Vectors: Skipped non-vectorized WI entry', entry); |
|
continue; |
|
} |
|
|
|
if (!Object.hasOwn(groupedEntries, entry.world)) { |
|
groupedEntries[entry.world] = []; |
|
} |
|
|
|
groupedEntries[entry.world].push(entry); |
|
} |
|
|
|
const collectionIds = []; |
|
|
|
if (Object.keys(groupedEntries).length === 0) { |
|
console.debug('Vectors: No WI entries to synchronize'); |
|
return; |
|
} |
|
|
|
|
|
for (const world in groupedEntries) { |
|
const collectionId = `world_${getStringHash(world)}`; |
|
const hashesInCollection = await getSavedHashes(collectionId); |
|
const newEntries = groupedEntries[world].filter(x => !hashesInCollection.includes(getStringHash(x.content))); |
|
const deletedHashes = hashesInCollection.filter(x => !groupedEntries[world].some(y => getStringHash(y.content) === x)); |
|
|
|
if (newEntries.length > 0) { |
|
console.log(`Vectors: Found ${newEntries.length} new WI entries for world ${world}`); |
|
await insertVectorItems(collectionId, newEntries.map(x => ({ hash: getStringHash(x.content), text: x.content, index: x.uid }))); |
|
} |
|
|
|
if (deletedHashes.length > 0) { |
|
console.log(`Vectors: Deleted ${deletedHashes.length} old hashes for world ${world}`); |
|
await deleteVectorItems(collectionId, deletedHashes); |
|
} |
|
|
|
collectionIds.push(collectionId); |
|
} |
|
|
|
|
|
const queryText = await getQueryText(chat, 'world-info'); |
|
|
|
if (queryText.length === 0) { |
|
console.debug('Vectors: No text to query for WI'); |
|
return; |
|
} |
|
|
|
const queryResults = await queryMultipleCollections(collectionIds, queryText, settings.max_entries, settings.score_threshold); |
|
const activatedHashes = Object.values(queryResults).flatMap(x => x.hashes).filter(onlyUnique); |
|
const activatedEntries = []; |
|
|
|
|
|
for (const entry of entries) { |
|
const hash = getStringHash(entry.content); |
|
|
|
if (activatedHashes.includes(hash)) { |
|
activatedEntries.push(entry); |
|
} |
|
} |
|
|
|
if (activatedEntries.length === 0) { |
|
console.debug('Vectors: No activated WI entries found'); |
|
return; |
|
} |
|
|
|
console.log(`Vectors: Activated ${activatedEntries.length} WI entries`, activatedEntries); |
|
await eventSource.emit(event_types.WORLDINFO_FORCE_ACTIVATE, activatedEntries); |
|
} |
|
|
|
jQuery(async () => { |
|
if (!extension_settings.vectors) { |
|
extension_settings.vectors = settings; |
|
} |
|
|
|
|
|
if (settings['enabled']) { |
|
settings.enabled_chats = true; |
|
} |
|
|
|
Object.assign(settings, extension_settings.vectors); |
|
|
|
|
|
settings.source = settings.source !== 'local' ? settings.source : 'transformers'; |
|
const template = await renderExtensionTemplateAsync(MODULE_NAME, 'settings'); |
|
$('#vectors_container').append(template); |
|
$('#vectors_enabled_chats').prop('checked', settings.enabled_chats).on('input', () => { |
|
settings.enabled_chats = $('#vectors_enabled_chats').prop('checked'); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
toggleSettings(); |
|
}); |
|
$('#vectors_enabled_files').prop('checked', settings.enabled_files).on('input', () => { |
|
settings.enabled_files = $('#vectors_enabled_files').prop('checked'); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
toggleSettings(); |
|
}); |
|
$('#vectors_source').val(settings.source).on('change', () => { |
|
settings.source = String($('#vectors_source').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
toggleSettings(); |
|
}); |
|
$('#vector_altEndpointUrl_enabled').prop('checked', settings.use_alt_endpoint).on('input', () => { |
|
settings.use_alt_endpoint = $('#vector_altEndpointUrl_enabled').prop('checked'); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
$('#vector_altEndpoint_address').val(settings.alt_endpoint_url).on('change', () => { |
|
settings.alt_endpoint_url = String($('#vector_altEndpoint_address').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
$('#api_key_nomicai').on('click', async () => { |
|
const popupText = 'NomicAI API Key:'; |
|
const key = await callGenericPopup(popupText, POPUP_TYPE.INPUT, '', { |
|
customButtons: [{ |
|
text: 'Remove Key', |
|
appendAtEnd: true, |
|
result: POPUP_RESULT.NEGATIVE, |
|
action: async () => { |
|
await writeSecret(SECRET_KEYS.NOMICAI, ''); |
|
toastr.success('API Key removed'); |
|
$('#api_key_nomicai').toggleClass('success', !!secret_state[SECRET_KEYS.NOMICAI]); |
|
saveSettingsDebounced(); |
|
}, |
|
}], |
|
}); |
|
|
|
if (!key) { |
|
return; |
|
} |
|
|
|
await writeSecret(SECRET_KEYS.NOMICAI, String(key)); |
|
$('#api_key_nomicai').toggleClass('success', !!secret_state[SECRET_KEYS.NOMICAI]); |
|
|
|
toastr.success('API Key saved'); |
|
saveSettingsDebounced(); |
|
}); |
|
$('#vectors_togetherai_model').val(settings.togetherai_model).on('change', () => { |
|
settings.togetherai_model = String($('#vectors_togetherai_model').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
$('#vectors_openai_model').val(settings.openai_model).on('change', () => { |
|
settings.openai_model = String($('#vectors_openai_model').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
$('#vectors_cohere_model').val(settings.cohere_model).on('change', () => { |
|
settings.cohere_model = String($('#vectors_cohere_model').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
$('#vectors_ollama_model').val(settings.ollama_model).on('input', () => { |
|
settings.ollama_model = String($('#vectors_ollama_model').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
$('#vectors_vllm_model').val(settings.vllm_model).on('input', () => { |
|
settings.vllm_model = String($('#vectors_vllm_model').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
$('#vectors_ollama_keep').prop('checked', settings.ollama_keep).on('input', () => { |
|
settings.ollama_keep = $('#vectors_ollama_keep').prop('checked'); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
$('#vectors_template').val(settings.template).on('input', () => { |
|
settings.template = String($('#vectors_template').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
$('#vectors_depth').val(settings.depth).on('input', () => { |
|
settings.depth = Number($('#vectors_depth').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
$('#vectors_protect').val(settings.protect).on('input', () => { |
|
settings.protect = Number($('#vectors_protect').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
$('#vectors_insert').val(settings.insert).on('input', () => { |
|
settings.insert = Number($('#vectors_insert').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
$('#vectors_query').val(settings.query).on('input', () => { |
|
settings.query = Number($('#vectors_query').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
$(`input[name="vectors_position"][value="${settings.position}"]`).prop('checked', true); |
|
$('input[name="vectors_position"]').on('change', () => { |
|
settings.position = Number($('input[name="vectors_position"]:checked').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
$('#vectors_vectorize_all').on('click', onVectorizeAllClick); |
|
$('#vectors_purge').on('click', onPurgeClick); |
|
$('#vectors_view_stats').on('click', onViewStatsClick); |
|
$('#vectors_files_vectorize_all').on('click', onVectorizeAllFilesClick); |
|
$('#vectors_files_purge').on('click', onPurgeFilesClick); |
|
|
|
$('#vectors_size_threshold').val(settings.size_threshold).on('input', () => { |
|
settings.size_threshold = Number($('#vectors_size_threshold').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_chunk_size').val(settings.chunk_size).on('input', () => { |
|
settings.chunk_size = Number($('#vectors_chunk_size').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_chunk_count').val(settings.chunk_count).on('input', () => { |
|
settings.chunk_count = Number($('#vectors_chunk_count').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_include_wi').prop('checked', settings.include_wi).on('input', () => { |
|
settings.include_wi = !!$('#vectors_include_wi').prop('checked'); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_summarize').prop('checked', settings.summarize).on('input', () => { |
|
settings.summarize = !!$('#vectors_summarize').prop('checked'); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_summarize_user').prop('checked', settings.summarize_sent).on('input', () => { |
|
settings.summarize_sent = !!$('#vectors_summarize_user').prop('checked'); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_summary_source').val(settings.summary_source).on('change', () => { |
|
settings.summary_source = String($('#vectors_summary_source').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_summary_prompt').val(settings.summary_prompt).on('input', () => { |
|
settings.summary_prompt = String($('#vectors_summary_prompt').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_message_chunk_size').val(settings.message_chunk_size).on('input', () => { |
|
settings.message_chunk_size = Number($('#vectors_message_chunk_size').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_size_threshold_db').val(settings.size_threshold_db).on('input', () => { |
|
settings.size_threshold_db = Number($('#vectors_size_threshold_db').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_chunk_size_db').val(settings.chunk_size_db).on('input', () => { |
|
settings.chunk_size_db = Number($('#vectors_chunk_size_db').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_chunk_count_db').val(settings.chunk_count_db).on('input', () => { |
|
settings.chunk_count_db = Number($('#vectors_chunk_count_db').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_overlap_percent').val(settings.overlap_percent).on('input', () => { |
|
settings.overlap_percent = Number($('#vectors_overlap_percent').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_overlap_percent_db').val(settings.overlap_percent_db).on('input', () => { |
|
settings.overlap_percent_db = Number($('#vectors_overlap_percent_db').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_file_template_db').val(settings.file_template_db).on('input', () => { |
|
settings.file_template_db = String($('#vectors_file_template_db').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$(`input[name="vectors_file_position_db"][value="${settings.file_position_db}"]`).prop('checked', true); |
|
$('input[name="vectors_file_position_db"]').on('change', () => { |
|
settings.file_position_db = Number($('input[name="vectors_file_position_db"]:checked').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_file_depth_db').val(settings.file_depth_db).on('input', () => { |
|
settings.file_depth_db = Number($('#vectors_file_depth_db').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_file_depth_role_db').val(settings.file_depth_role_db).on('input', () => { |
|
settings.file_depth_role_db = Number($('#vectors_file_depth_role_db').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_translate_files').prop('checked', settings.translate_files).on('input', () => { |
|
settings.translate_files = !!$('#vectors_translate_files').prop('checked'); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_enabled_world_info').prop('checked', settings.enabled_world_info).on('input', () => { |
|
settings.enabled_world_info = !!$('#vectors_enabled_world_info').prop('checked'); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
toggleSettings(); |
|
}); |
|
|
|
$('#vectors_enabled_for_all').prop('checked', settings.enabled_for_all).on('input', () => { |
|
settings.enabled_for_all = !!$('#vectors_enabled_for_all').prop('checked'); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_max_entries').val(settings.max_entries).on('input', () => { |
|
settings.max_entries = Number($('#vectors_max_entries').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_score_threshold').val(settings.score_threshold).on('input', () => { |
|
settings.score_threshold = Number($('#vectors_score_threshold').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_force_chunk_delimiter').val(settings.force_chunk_delimiter).on('input', () => { |
|
settings.force_chunk_delimiter = String($('#vectors_force_chunk_delimiter').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_only_custom_boundary').prop('checked', settings.only_custom_boundary).on('input', () => { |
|
settings.only_custom_boundary = !!$('#vectors_only_custom_boundary').prop('checked'); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_ollama_pull').on('click', (e) => { |
|
const presetModel = extension_settings.vectors.ollama_model || ''; |
|
e.preventDefault(); |
|
$('#ollama_download_model').trigger('click'); |
|
$('#dialogue_popup_input').val(presetModel); |
|
}); |
|
|
|
$('#vectors_webllm_install').on('click', (e) => { |
|
e.preventDefault(); |
|
e.stopPropagation(); |
|
|
|
if (Object.hasOwn(SillyTavern, 'llm')) { |
|
toastr.info('WebLLM is already installed'); |
|
return; |
|
} |
|
|
|
openThirdPartyExtensionMenu('https://github.com/SillyTavern/Extension-WebLLM'); |
|
}); |
|
|
|
$('#vectors_webllm_model').on('input', () => { |
|
settings.webllm_model = String($('#vectors_webllm_model').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#vectors_webllm_load').on('click', async () => { |
|
if (!settings.webllm_model) return; |
|
await webllmProvider.loadModel(settings.webllm_model); |
|
toastr.success('WebLLM model loaded'); |
|
}); |
|
|
|
$('#vectors_google_model').val(settings.google_model).on('input', () => { |
|
settings.google_model = String($('#vectors_google_model').val()); |
|
Object.assign(extension_settings.vectors, settings); |
|
saveSettingsDebounced(); |
|
}); |
|
|
|
$('#api_key_nomicai').toggleClass('success', !!secret_state[SECRET_KEYS.NOMICAI]); |
|
|
|
toggleSettings(); |
|
eventSource.on(event_types.MESSAGE_DELETED, onChatEvent); |
|
eventSource.on(event_types.MESSAGE_EDITED, onChatEvent); |
|
eventSource.on(event_types.MESSAGE_SENT, onChatEvent); |
|
eventSource.on(event_types.MESSAGE_RECEIVED, onChatEvent); |
|
eventSource.on(event_types.MESSAGE_SWIPED, onChatEvent); |
|
eventSource.on(event_types.CHAT_DELETED, purgeVectorIndex); |
|
eventSource.on(event_types.GROUP_CHAT_DELETED, purgeVectorIndex); |
|
eventSource.on(event_types.FILE_ATTACHMENT_DELETED, purgeFileVectorIndex); |
|
eventSource.on(event_types.EXTENSION_SETTINGS_LOADED, async (manifest) => { |
|
if (settings.source === 'webllm' && manifest?.display_name === 'WebLLM') { |
|
await loadWebLlmModels(); |
|
} |
|
}); |
|
|
|
SlashCommandParser.addCommandObject(SlashCommand.fromProps({ |
|
name: 'db-ingest', |
|
callback: async () => { |
|
await ingestDataBankAttachments(); |
|
return ''; |
|
}, |
|
aliases: ['databank-ingest', 'data-bank-ingest'], |
|
helpString: 'Force the ingestion of all Data Bank attachments.', |
|
})); |
|
|
|
SlashCommandParser.addCommandObject(SlashCommand.fromProps({ |
|
name: 'db-purge', |
|
callback: async () => { |
|
const dataBank = getDataBankAttachments(); |
|
|
|
for (const file of dataBank) { |
|
await purgeFileVectorIndex(file.url); |
|
} |
|
|
|
return ''; |
|
}, |
|
aliases: ['databank-purge', 'data-bank-purge'], |
|
helpString: 'Purge the vector index for all Data Bank attachments.', |
|
})); |
|
|
|
SlashCommandParser.addCommandObject(SlashCommand.fromProps({ |
|
name: 'db-search', |
|
callback: async (args, query) => { |
|
const clamp = (v) => Number.isNaN(v) ? null : Math.min(1, Math.max(0, v)); |
|
const threshold = clamp(Number(args?.threshold ?? settings.score_threshold)); |
|
const validateCount = (v) => Number.isNaN(v) || !Number.isInteger(v) || v < 1 ? null : v; |
|
const count = validateCount(Number(args?.count)) ?? settings.chunk_count_db; |
|
const source = String(args?.source ?? ''); |
|
const attachments = source ? getDataBankAttachmentsForSource(source, false) : getDataBankAttachments(false); |
|
const collectionIds = await ingestDataBankAttachments(String(source)); |
|
const queryResults = await queryMultipleCollections(collectionIds, String(query), count, threshold); |
|
|
|
|
|
const urls = Object |
|
.keys(queryResults) |
|
.map(x => attachments.find(y => getFileCollectionId(y.url) === x)) |
|
.filter(x => x) |
|
.map(x => x.url); |
|
|
|
|
|
const getChunksText = () => { |
|
let textResult = ''; |
|
for (const collectionId in queryResults) { |
|
const metadata = queryResults[collectionId].metadata?.filter(x => x.text)?.sort((a, b) => a.index - b.index)?.map(x => x.text)?.filter(onlyUnique) || []; |
|
textResult += metadata.join('\n') + '\n\n'; |
|
} |
|
return textResult; |
|
}; |
|
if (args.return === 'chunks') { |
|
return getChunksText(); |
|
} |
|
|
|
|
|
return slashCommandReturnHelper.doReturn(args.return ?? 'object', urls, { objectToStringFunc: list => list.join('\n') }); |
|
}, |
|
aliases: ['databank-search', 'data-bank-search'], |
|
helpString: 'Search the Data Bank for a specific query using vector similarity. Returns a list of file URLs with the most relevant content.', |
|
namedArgumentList: [ |
|
new SlashCommandNamedArgument('threshold', 'Threshold for the similarity score in the [0, 1] range. Uses the global config value if not set.', ARGUMENT_TYPE.NUMBER, false, false, ''), |
|
new SlashCommandNamedArgument('count', 'Maximum number of query results to return.', ARGUMENT_TYPE.NUMBER, false, false, ''), |
|
new SlashCommandNamedArgument('source', 'Optional filter for the attachments by source.', ARGUMENT_TYPE.STRING, false, false, '', ['global', 'character', 'chat']), |
|
SlashCommandNamedArgument.fromProps({ |
|
name: 'return', |
|
description: 'How you want the return value to be provided', |
|
typeList: [ARGUMENT_TYPE.STRING], |
|
defaultValue: 'object', |
|
enumList: [ |
|
new SlashCommandEnumValue('chunks', 'Return the actual content chunks', enumTypes.enum, '{}'), |
|
...slashCommandReturnHelper.enumList({ allowObject: true }), |
|
], |
|
forceEnum: true, |
|
}), |
|
], |
|
unnamedArgumentList: [ |
|
new SlashCommandArgument('Query to search by.', ARGUMENT_TYPE.STRING, true, false), |
|
], |
|
returns: ARGUMENT_TYPE.LIST, |
|
})); |
|
|
|
registerDebugFunction('purge-everything', 'Purge all vector indices', 'Obliterate all stored vectors for all sources. No mercy.', async () => { |
|
if (!confirm('Are you sure?')) { |
|
return; |
|
} |
|
await purgeAllVectorIndexes(); |
|
}); |
|
}); |
|
|