File size: 8,001 Bytes
344cf8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import json
import os
import warnings

import gradio as gr
import librosa
import numpy as np
from datasets import IterableDatasetDict, load_dataset
from gradio_client import Client
from loguru import logger

warnings.filterwarnings("ignore")

NUM_TAR_FILES = 115
HF_PATH_TO_DATASET = "litagin/Galgame_Speech_SER_16kHz"

hf_token = os.getenv("HF_TOKEN")
client = Client("litagin/ser_record", hf_token=hf_token)

id2label = {
    0: "Angry",
    1: "Disgusted",
    2: "Embarrassed",
    3: "Fearful",
    4: "Happy",
    5: "Sad",
    6: "Surprised",
    7: "Neutral",
    8: "Sexual1",
    9: "Sexual2",
}

id2rich_label = {
    0: "😠 怒り (0)",
    1: "😒 嫌悪 (1)",
    2: "😳 恥ずかしさ・戸惑い (2)",
    3: "😨 恐怖 (3)",
    4: "😊 幸せ (4)",
    5: "😢 悲しみ (5)",
    6: "😲 驚き (6)",
    7: "😐 中立 (7)",
    8: "🥰 NSFW1 (8)",
    9: "🍭 NSFW2 (9)",
}

current_item: dict | None = None


def _load_dataset(
    *,
    streaming: bool = True,
    use_local_dataset: bool = False,
    local_dataset_path: str | None = None,
    data_dir: str = "data",
) -> IterableDatasetDict:
    data_files = {
        "train": [
            f"galgame-speech-ser-16kHz-train-000{index:03d}.tar"
            for index in range(0, NUM_TAR_FILES)
        ],
    }
    if use_local_dataset:
        assert local_dataset_path is not None
        path = local_dataset_path
    else:
        path = HF_PATH_TO_DATASET
    dataset: IterableDatasetDict = load_dataset(
        path=path, data_dir=data_dir, data_files=data_files, streaming=streaming
    )  # type: ignore

    dataset = dataset.remove_columns(["__url__"])
    dataset = dataset.rename_column("ogg", "audio")

    return dataset


logger.info("Start loading dataset")
ds = _load_dataset(streaming=True, use_local_dataset=False)
logger.info("Dataset loaded")
# seed = random.randint(0, 2**32 - 1)
# logger.info(f"Seed: {seed}")
# ds_iter = iter(ds["train"].shuffle(seed=seed))
ds_iter = iter(ds["train"])

shortcut_js = """
<script>
function shortcuts(e) {
    if (e.key === "Enter") {
        document.getElementById("btn_skip").click();
    } else if (e.key === "0") {
        document.getElementById("btn_0").click();
    } else if (e.key === "1") {
        document.getElementById("btn_1").click();
    } else if (e.key === "2") {
        document.getElementById("btn_2").click();
    } else if (e.key === "3") {
        document.getElementById("btn_3").click();
    } else if (e.key === "4") {
        document.getElementById("btn_4").click();
    } else if (e.key === "5") {
        document.getElementById("btn_5").click();
    } else if (e.key === "6") {
        document.getElementById("btn_6").click();
    } else if (e.key === "7") {
        document.getElementById("btn_7").click();
    } else if (e.key === "8") {
        document.getElementById("btn_8").click();
    } else if (e.key === "9") {
        document.getElementById("btn_9").click();
    }
}
document.addEventListener('keypress', shortcuts, false);
</script>
"""


def modify_speed(
    data: tuple[int, np.ndarray], speed: float = 1.0
) -> tuple[int, np.ndarray]:
    if speed == 1.0:
        return data
    sr, array = data
    return sr, librosa.effects.time_stretch(array, rate=speed)


def parse_item(item, speed: float = 1.0) -> dict:
    label_id = item["cls"]
    sampling_rate = item["audio"]["sampling_rate"]
    array = item["audio"]["array"]

    return {
        "key": item["__key__"],
        "audio": (sampling_rate, array),
        "text": item["txt"],
        "label": id2rich_label[label_id],
        "label_id": label_id,
    }


def get_next_parsed_item(speed: float = 1.0) -> dict:
    logger.info("Getting next item")
    next_item = next(ds_iter)
    parsed = parse_item(next_item, speed=speed)
    logger.info(
        f"Next item:\nkey={parsed['key']}\ntext={parsed['text']}\nlabel={parsed['label']}"
    )
    return parsed


md = """
# 説明

- このアプリは、ゲームのセリフを感情ラベル付けして、大規模な感情音声データセットを作成するためのものです
- **性的な音声が含まれるため、18歳未満の方はご利用をお控えください**
- 既存のラベルが適切であれば、そのまま「現在の感情ラベルで適切」ボタンを押してください
- ラベルを修正する場合は、適切なボタンを押してください
- ショートカットキー(カッコ内)を使うこともできます

# 補足

- `🥰 NSFW1` は女性の性的行為中の音声(喘ぎ声等)
- `🍭 NSFW2` はキスシーンでのリップ音やフェラシーンでのしゃぶる音(チュパ音)を表します
- 感情が音声からは特に読み取れない場合は `😐 中立` を選択してください
"""

with gr.Blocks(head=shortcut_js) as app:
    gr.Markdown(md)
    with gr.Row():
        with gr.Column():
            btn_init = gr.Button("初期化・再読み込み")
            speed = gr.Slider(
                minimum=0.5, maximum=5.0, step=0.1, value=1.0, label="再生速度"
            )
            with gr.Column(variant="panel"):
                key = gr.Textbox(label="Key")
                audio = gr.Audio()
                text = gr.Textbox(label="Text")
                label = gr.Textbox(label="感情ラベル")
                label_id = gr.Textbox(visible=False)
            btn_skip = gr.Button("現在の感情ラベルで適切 (Enter)", elem_id="btn_skip")
        with gr.Column():
            gr.Markdown("# 感情ラベルを修正する場合")
            btn_list = [
                gr.Button(id2rich_label[_id], elem_id=f"btn_{_id}") for _id in range(10)
            ]

    def update_current_item(data: dict) -> dict:
        global current_item
        if current_item is None:
            speed_value = data[speed]
            current_item = get_next_parsed_item(speed=speed_value)
        modified_audio = modify_speed(current_item["audio"], speed=data[speed])
        return {
            key: current_item["key"],
            audio: gr.Audio(modified_audio, autoplay=True),
            text: current_item["text"],
            label: current_item["label"],
            label_id: current_item["label_id"],
        }

    def set_next_item(data: dict) -> dict:
        global current_item
        speed_value = data[speed]
        current_item = get_next_parsed_item(speed=speed_value)
        return update_current_item(data)

    def put_unmodified(data: dict) -> dict:
        logger.info("Putting unmodified")
        current_key = data[key]
        current_label_id = data[label_id]
        _ = client.predict(
            new_data=json.dumps(
                {
                    "key": current_key,
                    "cls": int(current_label_id),
                }
            ),
            api_name="/put_data",
        )
        logger.info("Unmodified sent")
        return set_next_item(data)

    btn_init.click(
        update_current_item, inputs={speed}, outputs=[key, audio, text, label, label_id]
    )

    btn_skip.click(
        put_unmodified,
        inputs={key, label_id, speed},
        outputs=[key, audio, text, label, label_id],
    )

    functions_list = []
    for _id in range(10):

        def put_label(data: dict, _id=_id) -> dict:
            logger.info(f"Putting label: {id2rich_label[_id]}")
            current_key = data[key]
            _ = client.predict(
                new_data=json.dumps(
                    {
                        "key": current_key,
                        "cls": _id,
                    }
                ),
                api_name="/put_data",
            )
            logger.info("Modified sent")
            return set_next_item(data)

        functions_list.append(put_label)

    for _id in range(10):
        btn_list[_id].click(
            functions_list[_id],
            inputs={key, speed},
            outputs=[key, audio, text, label, label_id],
        )

app.launch()