Spaces:
Runtime error
Runtime error
File size: 8,001 Bytes
344cf8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import json
import os
import warnings
import gradio as gr
import librosa
import numpy as np
from datasets import IterableDatasetDict, load_dataset
from gradio_client import Client
from loguru import logger
warnings.filterwarnings("ignore")
NUM_TAR_FILES = 115
HF_PATH_TO_DATASET = "litagin/Galgame_Speech_SER_16kHz"
hf_token = os.getenv("HF_TOKEN")
client = Client("litagin/ser_record", hf_token=hf_token)
id2label = {
0: "Angry",
1: "Disgusted",
2: "Embarrassed",
3: "Fearful",
4: "Happy",
5: "Sad",
6: "Surprised",
7: "Neutral",
8: "Sexual1",
9: "Sexual2",
}
id2rich_label = {
0: "😠 怒り (0)",
1: "😒 嫌悪 (1)",
2: "😳 恥ずかしさ・戸惑い (2)",
3: "😨 恐怖 (3)",
4: "😊 幸せ (4)",
5: "😢 悲しみ (5)",
6: "😲 驚き (6)",
7: "😐 中立 (7)",
8: "🥰 NSFW1 (8)",
9: "🍭 NSFW2 (9)",
}
current_item: dict | None = None
def _load_dataset(
*,
streaming: bool = True,
use_local_dataset: bool = False,
local_dataset_path: str | None = None,
data_dir: str = "data",
) -> IterableDatasetDict:
data_files = {
"train": [
f"galgame-speech-ser-16kHz-train-000{index:03d}.tar"
for index in range(0, NUM_TAR_FILES)
],
}
if use_local_dataset:
assert local_dataset_path is not None
path = local_dataset_path
else:
path = HF_PATH_TO_DATASET
dataset: IterableDatasetDict = load_dataset(
path=path, data_dir=data_dir, data_files=data_files, streaming=streaming
) # type: ignore
dataset = dataset.remove_columns(["__url__"])
dataset = dataset.rename_column("ogg", "audio")
return dataset
logger.info("Start loading dataset")
ds = _load_dataset(streaming=True, use_local_dataset=False)
logger.info("Dataset loaded")
# seed = random.randint(0, 2**32 - 1)
# logger.info(f"Seed: {seed}")
# ds_iter = iter(ds["train"].shuffle(seed=seed))
ds_iter = iter(ds["train"])
shortcut_js = """
<script>
function shortcuts(e) {
if (e.key === "Enter") {
document.getElementById("btn_skip").click();
} else if (e.key === "0") {
document.getElementById("btn_0").click();
} else if (e.key === "1") {
document.getElementById("btn_1").click();
} else if (e.key === "2") {
document.getElementById("btn_2").click();
} else if (e.key === "3") {
document.getElementById("btn_3").click();
} else if (e.key === "4") {
document.getElementById("btn_4").click();
} else if (e.key === "5") {
document.getElementById("btn_5").click();
} else if (e.key === "6") {
document.getElementById("btn_6").click();
} else if (e.key === "7") {
document.getElementById("btn_7").click();
} else if (e.key === "8") {
document.getElementById("btn_8").click();
} else if (e.key === "9") {
document.getElementById("btn_9").click();
}
}
document.addEventListener('keypress', shortcuts, false);
</script>
"""
def modify_speed(
data: tuple[int, np.ndarray], speed: float = 1.0
) -> tuple[int, np.ndarray]:
if speed == 1.0:
return data
sr, array = data
return sr, librosa.effects.time_stretch(array, rate=speed)
def parse_item(item, speed: float = 1.0) -> dict:
label_id = item["cls"]
sampling_rate = item["audio"]["sampling_rate"]
array = item["audio"]["array"]
return {
"key": item["__key__"],
"audio": (sampling_rate, array),
"text": item["txt"],
"label": id2rich_label[label_id],
"label_id": label_id,
}
def get_next_parsed_item(speed: float = 1.0) -> dict:
logger.info("Getting next item")
next_item = next(ds_iter)
parsed = parse_item(next_item, speed=speed)
logger.info(
f"Next item:\nkey={parsed['key']}\ntext={parsed['text']}\nlabel={parsed['label']}"
)
return parsed
md = """
# 説明
- このアプリは、ゲームのセリフを感情ラベル付けして、大規模な感情音声データセットを作成するためのものです
- **性的な音声が含まれるため、18歳未満の方はご利用をお控えください**
- 既存のラベルが適切であれば、そのまま「現在の感情ラベルで適切」ボタンを押してください
- ラベルを修正する場合は、適切なボタンを押してください
- ショートカットキー(カッコ内)を使うこともできます
# 補足
- `🥰 NSFW1` は女性の性的行為中の音声(喘ぎ声等)
- `🍭 NSFW2` はキスシーンでのリップ音やフェラシーンでのしゃぶる音(チュパ音)を表します
- 感情が音声からは特に読み取れない場合は `😐 中立` を選択してください
"""
with gr.Blocks(head=shortcut_js) as app:
gr.Markdown(md)
with gr.Row():
with gr.Column():
btn_init = gr.Button("初期化・再読み込み")
speed = gr.Slider(
minimum=0.5, maximum=5.0, step=0.1, value=1.0, label="再生速度"
)
with gr.Column(variant="panel"):
key = gr.Textbox(label="Key")
audio = gr.Audio()
text = gr.Textbox(label="Text")
label = gr.Textbox(label="感情ラベル")
label_id = gr.Textbox(visible=False)
btn_skip = gr.Button("現在の感情ラベルで適切 (Enter)", elem_id="btn_skip")
with gr.Column():
gr.Markdown("# 感情ラベルを修正する場合")
btn_list = [
gr.Button(id2rich_label[_id], elem_id=f"btn_{_id}") for _id in range(10)
]
def update_current_item(data: dict) -> dict:
global current_item
if current_item is None:
speed_value = data[speed]
current_item = get_next_parsed_item(speed=speed_value)
modified_audio = modify_speed(current_item["audio"], speed=data[speed])
return {
key: current_item["key"],
audio: gr.Audio(modified_audio, autoplay=True),
text: current_item["text"],
label: current_item["label"],
label_id: current_item["label_id"],
}
def set_next_item(data: dict) -> dict:
global current_item
speed_value = data[speed]
current_item = get_next_parsed_item(speed=speed_value)
return update_current_item(data)
def put_unmodified(data: dict) -> dict:
logger.info("Putting unmodified")
current_key = data[key]
current_label_id = data[label_id]
_ = client.predict(
new_data=json.dumps(
{
"key": current_key,
"cls": int(current_label_id),
}
),
api_name="/put_data",
)
logger.info("Unmodified sent")
return set_next_item(data)
btn_init.click(
update_current_item, inputs={speed}, outputs=[key, audio, text, label, label_id]
)
btn_skip.click(
put_unmodified,
inputs={key, label_id, speed},
outputs=[key, audio, text, label, label_id],
)
functions_list = []
for _id in range(10):
def put_label(data: dict, _id=_id) -> dict:
logger.info(f"Putting label: {id2rich_label[_id]}")
current_key = data[key]
_ = client.predict(
new_data=json.dumps(
{
"key": current_key,
"cls": _id,
}
),
api_name="/put_data",
)
logger.info("Modified sent")
return set_next_item(data)
functions_list.append(put_label)
for _id in range(10):
btn_list[_id].click(
functions_list[_id],
inputs={key, speed},
outputs=[key, audio, text, label, label_id],
)
app.launch()
|