Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,882 Bytes
bef66de 4d2d3bd f4fa6cb bef66de 07c2d2e f4fa6cb d01f68f ab55ccc bef66de 4d2d3bd 07c2d2e bef66de eefa888 4d2d3bd bef66de eefa888 bef66de ab55ccc d01f68f 2abc41d d01f68f ab55ccc bef66de d01f68f bef66de 4d2d3bd 5331478 f4fa6cb bef66de f4fa6cb d4d32c6 bef66de 4d2d3bd bef66de f4fa6cb bef66de 5331478 d01f68f bef66de d01f68f bef66de d01f68f bef66de d01f68f bef66de d01f68f bef66de d01f68f bef66de eefa888 2abc41d ab55ccc bef66de eefa888 bef66de eefa888 4d2d3bd 5331478 ab55ccc 409084a 4d2d3bd 409084a eefa888 4d2d3bd 409084a bef66de 409084a bef66de d01f68f eefa888 d01f68f bef66de d01f68f bef66de d01f68f bef66de d01f68f bef66de d01f68f bef66de d01f68f bef66de eefa888 bef66de 2abc41d a0b4d2a bef66de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import os
import time
import warnings
from pathlib import Path
import gradio as gr
import huggingface_hub
import librosa
import spaces
import torch
from loguru import logger
from transformers import pipeline
warnings.filterwarnings("ignore")
huggingface_hub.login(token=os.getenv("HF_TOKEN"))
is_hf = os.getenv("SYSTEM") == "spaces"
generate_kwargs = {
"language": "Japanese",
"do_sample": False,
"num_beams": 1,
"no_repeat_ngram_size": 0,
"max_new_tokens": 64,
}
model_dict = {
"whisper-large-v2": "openai/whisper-large-v2",
"whisper-large-v3": "openai/whisper-large-v3",
"whisper-large-v3-turbo": "openai/whisper-large-v3-turbo",
"kotoba-whisper-v1.0": "kotoba-tech/kotoba-whisper-v1.0",
"kotoba-whisper-v2.0": "kotoba-tech/kotoba-whisper-v2.0",
"anime-whisper": "litagin/anime-whisper",
}
logger.info("Initializing pipelines...")
pipe_dict = {
k: pipeline(
"automatic-speech-recognition",
model=v,
device="cuda" if torch.cuda.is_available() else "cpu",
)
for k, v in model_dict.items()
}
logger.success("Pipelines initialized!")
@spaces.GPU
def transcribe_common(audio: str, model: str) -> tuple[str, float]:
if not audio:
return "No audio file", 0
filename = Path(audio).name
logger.info(f"Model: {model}")
logger.info(f"Audio: {filename}")
# Read and resample audio to 16kHz
y, sr = librosa.load(audio, mono=True, sr=16000)
# Get duration of audio
duration = librosa.get_duration(y=y, sr=sr)
logger.info(f"Duration: {duration:.2f}s")
if duration > 15:
logger.error(f"Audio too long, limit is 15 seconds, got {duration:.2f}s")
return f"Audio too long, limit is 15 seconds, got {duration:.2f}s", 0
start_time = time.time()
result = pipe_dict[model](y, generate_kwargs=generate_kwargs)["text"]
end_time = time.time()
logger.success(f"Finished in {end_time - start_time:.2f}s\n{result}")
return result, end_time - start_time
def transcribe_large_v2(audio) -> tuple[str, float]:
return transcribe_common(audio, "whisper-large-v2")
def transcribe_large_v3(audio) -> tuple[str, float]:
return transcribe_common(audio, "whisper-large-v3")
def transcribe_large_v3_turbo(audio) -> tuple[str, float]:
return transcribe_common(audio, "whisper-large-v3-turbo")
def transcribe_kotoba_v1(audio) -> tuple[str, float]:
return transcribe_common(audio, "kotoba-whisper-v1.0")
def transcribe_kotoba_v2(audio) -> tuple[str, float]:
return transcribe_common(audio, "kotoba-whisper-v2.0")
def transcribe_anime_whisper(audio) -> tuple[str, float]:
return transcribe_common(audio, "anime-whisper")
initial_md = """
# Anime-Whisper Demo
- 音声認識モデル [kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0) をファインチューンしたモデルのお試し
- https://huggingface.co/litagin/anime-whisper
- デモでは**音声は15秒まで**しか受け付けません
- 日本語のみ対応 (Japanese only)
- 現在0.1エポックくらい
- 比較できるように他モデルもついでに試せる
pipeに渡しているkwargsは以下の最低限のもの:
```python
generate_kwargs = {
"language": "Japanese",
"do_sample": False,
"num_beams": 1,
"no_repeat_ngram_size": 0,
"max_new_tokens": 64,
}
```
"""
with gr.Blocks() as app:
gr.Markdown(initial_md)
audio = gr.Audio(type="filepath")
with gr.Row():
with gr.Column():
gr.Markdown("### Anime-Whisper")
button_galgame = gr.Button("Transcribe with Anime-Whisper")
time_galgame = gr.Textbox(label="Time taken")
output_galgame = gr.Textbox(label="Result")
with gr.Row():
with gr.Column():
gr.Markdown("### Whisper-Large-V2")
button_v2 = gr.Button("Transcribe with Whisper-Large-V2")
time_v2 = gr.Textbox(label="Time taken")
output_v2 = gr.Textbox(label="Result")
with gr.Column():
gr.Markdown("### Whisper-Large-V3")
button_v3 = gr.Button("Transcribe with Whisper-Large-V3")
time_v3 = gr.Textbox(label="Time taken")
output_v3 = gr.Textbox(label="Result")
with gr.Column():
gr.Markdown("### Whisper-Large-V3-Turbo")
button_v3_turbo = gr.Button("Transcribe with Whisper-Large-V3-Turbo")
time_v3_turbo = gr.Textbox(label="Time taken")
output_v3_turbo = gr.Textbox(label="Result")
with gr.Row():
with gr.Column():
gr.Markdown("### Kotoba-Whisper-V1.0")
button_kotoba_v1 = gr.Button("Transcribe with Kotoba-Whisper-V1.0")
time_kotoba_v1 = gr.Textbox(label="Time taken")
output_kotoba_v1 = gr.Textbox(label="Result")
with gr.Column():
gr.Markdown("### Kotoba-Whisper-V2.0")
button_kotoba_v2 = gr.Button("Transcribe with Kotoba-Whisper-V2.0")
time_kotoba_v2 = gr.Textbox(label="Time taken")
output_kotoba_v2 = gr.Textbox(label="Result")
button_v2.click(transcribe_large_v2, inputs=audio, outputs=[output_v2, time_v2])
button_v3.click(transcribe_large_v3, inputs=audio, outputs=[output_v3, time_v3])
button_v3_turbo.click(
transcribe_large_v3_turbo,
inputs=audio,
outputs=[output_v3_turbo, time_v3_turbo],
)
button_kotoba_v1.click(
transcribe_kotoba_v1, inputs=audio, outputs=[output_kotoba_v1, time_kotoba_v1]
)
button_kotoba_v2.click(
transcribe_kotoba_v2, inputs=audio, outputs=[output_kotoba_v2, time_kotoba_v2]
)
button_galgame.click(
transcribe_anime_whisper,
inputs=audio,
outputs=[output_galgame, time_galgame],
)
# app.load(warmup, inputs=[], outputs=[warmup_result], queue=True)
app.launch(inbrowser=True)
|