from diffusers_helper.hf_login import login import os import threading import time import requests from requests.adapters import HTTPAdapter from urllib3.util.retry import Retry import json os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))) # 添加中英双语翻译字典 translations = { "en": { "title": "FramePack - Image to Video Generation", "upload_image": "Upload Image", "prompt": "Prompt", "quick_prompts": "Quick Prompts", "start_generation": "Generate", "stop_generation": "Stop", "use_teacache": "Use TeaCache", "teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.", "negative_prompt": "Negative Prompt", "seed": "Seed", "video_length": "Video Length (seconds)", "latent_window": "Latent Window Size", "steps": "Inference Steps", "steps_info": "Changing this value is not recommended.", "cfg_scale": "CFG Scale", "distilled_cfg": "Distilled CFG Scale", "distilled_cfg_info": "Changing this value is not recommended.", "cfg_rescale": "CFG Rescale", "gpu_memory": "GPU Memory Preservation (GB) (larger means slower)", "gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.", "next_latents": "Next Latents", "generated_video": "Generated Video", "sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.", "error_message": "Error", "processing_error": "Processing error", "network_error": "Network connection is unstable, model download timed out. Please try again later.", "memory_error": "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length.", "model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.", "partial_video": "Processing error, but partial video has been generated", "processing_interrupt": "Processing was interrupted, but partial video has been generated" }, "zh": { "title": "FramePack - 图像到视频生成", "upload_image": "上传图像", "prompt": "提示词", "quick_prompts": "快速提示词列表", "start_generation": "开始生成", "stop_generation": "结束生成", "use_teacache": "使用TeaCache", "teacache_info": "速度更快,但可能会使手指和手的生成效果稍差。", "negative_prompt": "负面提示词", "seed": "随机种子", "video_length": "视频长度(秒)", "latent_window": "潜在窗口大小", "steps": "推理步数", "steps_info": "不建议修改此值。", "cfg_scale": "CFG Scale", "distilled_cfg": "蒸馏CFG比例", "distilled_cfg_info": "不建议修改此值。", "cfg_rescale": "CFG重缩放", "gpu_memory": "GPU推理保留内存(GB)(值越大速度越慢)", "gpu_memory_info": "如果出现OOM错误,请将此值设置得更大。值越大,速度越慢。", "next_latents": "下一批潜变量", "generated_video": "生成的视频", "sampling_note": "注意:由于采样是倒序的,结束动作将在开始动作之前生成。如果视频中没有出现起始动作,请继续等待,它将在稍后生成。", "error_message": "错误信息", "processing_error": "处理过程出错", "network_error": "网络连接不稳定,模型下载超时。请稍后再试。", "memory_error": "GPU内存不足,请尝试增加GPU推理保留内存值或降低视频长度。", "model_error": "模型加载失败,可能是网络问题或服务器负载过高。请稍后再试。", "partial_video": "处理过程中出现错误,但已生成部分视频", "processing_interrupt": "处理过程中断,但已生成部分视频" } } # 语言切换功能 def get_translation(key, lang="en"): if lang in translations and key in translations[lang]: return translations[lang][key] # 默认返回英文 return translations["en"].get(key, key) # 默认语言设置 current_language = "en" # 切换语言函数 def switch_language(): global current_language current_language = "zh" if current_language == "en" else "en" return current_language import gradio as gr import torch import traceback import einops import safetensors.torch as sf import numpy as np import math # 检查是否在Hugging Face Space环境中 IN_HF_SPACE = os.environ.get('SPACE_ID') is not None # 如果在Hugging Face Space中,导入spaces模块 if IN_HF_SPACE: try: import spaces print("在Hugging Face Space环境中运行,已导入spaces模块") except ImportError: print("未能导入spaces模块,可能不在Hugging Face Space环境中") from PIL import Image from diffusers import AutoencoderKLHunyuanVideo from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete, IN_HF_SPACE as MEMORY_IN_HF_SPACE from diffusers_helper.thread_utils import AsyncStream, async_run from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html from transformers import SiglipImageProcessor, SiglipVisionModel from diffusers_helper.clip_vision import hf_clip_vision_encode from diffusers_helper.bucket_tools import find_nearest_bucket outputs_folder = './outputs/' os.makedirs(outputs_folder, exist_ok=True) # 在Spaces环境中,我们延迟所有CUDA操作 if not IN_HF_SPACE: # 仅在非Spaces环境中获取CUDA内存 try: if torch.cuda.is_available(): free_mem_gb = get_cuda_free_memory_gb(gpu) print(f'Free VRAM {free_mem_gb} GB') else: free_mem_gb = 6.0 # 默认值 print("CUDA不可用,使用默认的内存设置") except Exception as e: free_mem_gb = 6.0 # 默认值 print(f"获取CUDA内存时出错: {e},使用默认的内存设置") high_vram = free_mem_gb > 60 print(f'High-VRAM Mode: {high_vram}') else: # 在Spaces环境中使用默认值 print("在Spaces环境中使用默认内存设置") free_mem_gb = 60.0 # 默认在Spaces中使用较高的值 high_vram = True print(f'High-VRAM Mode: {high_vram}') # 使用models变量存储全局模型引用 models = {} # 使用加载模型的函数 def load_models(): global models print("开始加载模型...") # 加载模型 text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu() text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu() tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer') tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2') vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu() feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor') image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu() transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=torch.bfloat16).cpu() vae.eval() text_encoder.eval() text_encoder_2.eval() image_encoder.eval() transformer.eval() if not high_vram: vae.enable_slicing() vae.enable_tiling() transformer.high_quality_fp32_output_for_inference = True print('transformer.high_quality_fp32_output_for_inference = True') transformer.to(dtype=torch.bfloat16) vae.to(dtype=torch.float16) image_encoder.to(dtype=torch.float16) text_encoder.to(dtype=torch.float16) text_encoder_2.to(dtype=torch.float16) vae.requires_grad_(False) text_encoder.requires_grad_(False) text_encoder_2.requires_grad_(False) image_encoder.requires_grad_(False) transformer.requires_grad_(False) if torch.cuda.is_available(): if not high_vram: # DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster DynamicSwapInstaller.install_model(transformer, device=gpu) DynamicSwapInstaller.install_model(text_encoder, device=gpu) else: text_encoder.to(gpu) text_encoder_2.to(gpu) image_encoder.to(gpu) vae.to(gpu) transformer.to(gpu) # 保存到全局变量 models = { 'text_encoder': text_encoder, 'text_encoder_2': text_encoder_2, 'tokenizer': tokenizer, 'tokenizer_2': tokenizer_2, 'vae': vae, 'feature_extractor': feature_extractor, 'image_encoder': image_encoder, 'transformer': transformer } return models # 使用Hugging Face Spaces GPU装饰器 if IN_HF_SPACE and 'spaces' in globals(): @spaces.GPU def initialize_models(): """在@spaces.GPU装饰器内初始化模型""" return load_models() # 以下函数内部会延迟获取模型 def get_models(): """获取模型,如果尚未加载则加载模型""" global models # 添加模型加载锁,防止并发加载 model_loading_key = "__model_loading__" if not models: # 检查是否正在加载模型 if model_loading_key in globals(): print("模型正在加载中,等待...") # 等待模型加载完成 import time while not models and model_loading_key in globals(): time.sleep(0.5) return models try: # 设置加载标记 globals()[model_loading_key] = True if IN_HF_SPACE and 'spaces' in globals(): print("使用@spaces.GPU装饰器加载模型") models = initialize_models() else: print("直接加载模型") load_models() finally: # 无论成功与否,都移除加载标记 if model_loading_key in globals(): del globals()[model_loading_key] return models stream = AsyncStream() @torch.no_grad() def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache): # 获取模型 models = get_models() text_encoder = models['text_encoder'] text_encoder_2 = models['text_encoder_2'] tokenizer = models['tokenizer'] tokenizer_2 = models['tokenizer_2'] vae = models['vae'] feature_extractor = models['feature_extractor'] image_encoder = models['image_encoder'] transformer = models['transformer'] total_latent_sections = (total_second_length * 30) / (latent_window_size * 4) total_latent_sections = int(max(round(total_latent_sections), 1)) job_id = generate_timestamp() last_output_filename = None history_pixels = None history_latents = None total_generated_latent_frames = 0 stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...')))) try: # Clean GPU if not high_vram: unload_complete_models( text_encoder, text_encoder_2, image_encoder, vae, transformer ) # Text encoding stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...')))) if not high_vram: fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode. load_model_as_complete(text_encoder_2, target_device=gpu) llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) if cfg == 1: llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler) else: llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512) llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512) # Processing input image stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...')))) H, W, C = input_image.shape height, width = find_nearest_bucket(H, W, resolution=640) input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height) Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png')) input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1 input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None] # VAE encoding stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...')))) if not high_vram: load_model_as_complete(vae, target_device=gpu) start_latent = vae_encode(input_image_pt, vae) # CLIP Vision stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...')))) if not high_vram: load_model_as_complete(image_encoder, target_device=gpu) image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder) image_encoder_last_hidden_state = image_encoder_output.last_hidden_state # Dtype llama_vec = llama_vec.to(transformer.dtype) llama_vec_n = llama_vec_n.to(transformer.dtype) clip_l_pooler = clip_l_pooler.to(transformer.dtype) clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype) image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype) # Sampling stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...')))) rnd = torch.Generator("cpu").manual_seed(seed) num_frames = latent_window_size * 4 - 3 history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu() history_pixels = None total_generated_latent_frames = 0 latent_paddings = reversed(range(total_latent_sections)) if total_latent_sections > 4: # In theory the latent_paddings should follow the above sequence, but it seems that duplicating some # items looks better than expanding it when total_latent_sections > 4 # One can try to remove below trick and just # use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0] for latent_padding in latent_paddings: is_last_section = latent_padding == 0 latent_padding_size = latent_padding * latent_window_size if stream.input_queue.top() == 'end': # 确保在结束时保存当前的视频 if history_pixels is not None and total_generated_latent_frames > 0: try: output_filename = os.path.join(outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4') save_bcthw_as_mp4(history_pixels, output_filename, fps=30) stream.output_queue.push(('file', output_filename)) except Exception as e: print(f"保存最终视频时出错: {e}") stream.output_queue.push(('end', None)) return print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}') indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0) clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1) clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1) clean_latents_pre = start_latent.to(history_latents) clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2) clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2) if not high_vram: unload_complete_models() move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation) if use_teacache: transformer.initialize_teacache(enable_teacache=True, num_steps=steps) else: transformer.initialize_teacache(enable_teacache=False) def callback(d): preview = d['denoised'] preview = vae_decode_fake(preview) preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8) preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c') if stream.input_queue.top() == 'end': stream.output_queue.push(('end', None)) raise KeyboardInterrupt('User ends the task.') current_step = d['i'] + 1 percentage = int(100.0 * current_step / steps) hint = f'Sampling {current_step}/{steps}' desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...' stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint)))) return try: generated_latents = sample_hunyuan( transformer=transformer, sampler='unipc', width=width, height=height, frames=num_frames, real_guidance_scale=cfg, distilled_guidance_scale=gs, guidance_rescale=rs, # shift=3.0, num_inference_steps=steps, generator=rnd, prompt_embeds=llama_vec, prompt_embeds_mask=llama_attention_mask, prompt_poolers=clip_l_pooler, negative_prompt_embeds=llama_vec_n, negative_prompt_embeds_mask=llama_attention_mask_n, negative_prompt_poolers=clip_l_pooler_n, device=gpu, dtype=torch.bfloat16, image_embeddings=image_encoder_last_hidden_state, latent_indices=latent_indices, clean_latents=clean_latents, clean_latent_indices=clean_latent_indices, clean_latents_2x=clean_latents_2x, clean_latent_2x_indices=clean_latent_2x_indices, clean_latents_4x=clean_latents_4x, clean_latent_4x_indices=clean_latent_4x_indices, callback=callback, ) except Exception as e: print(f"采样过程中出错: {e}") traceback.print_exc() # 如果已经有生成的视频,返回最后生成的视频 if last_output_filename: stream.output_queue.push(('file', last_output_filename)) stream.output_queue.push(('end', None)) return if is_last_section: generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2) total_generated_latent_frames += int(generated_latents.shape[2]) history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2) if not high_vram: offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8) load_model_as_complete(vae, target_device=gpu) real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :] try: if history_pixels is None: history_pixels = vae_decode(real_history_latents, vae).cpu() else: section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2) overlapped_frames = latent_window_size * 4 - 3 current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu() history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames) if not high_vram: unload_complete_models() output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4') save_bcthw_as_mp4(history_pixels, output_filename, fps=30) print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}') last_output_filename = output_filename stream.output_queue.push(('file', output_filename)) except Exception as e: print(f"视频解码或保存过程中出错: {e}") traceback.print_exc() # 如果已经有生成的视频,返回最后生成的视频 if last_output_filename: stream.output_queue.push(('file', last_output_filename)) # 尝试继续下一次迭代 continue if is_last_section: break except Exception as e: print(f"处理过程中出现错误: {e}") traceback.print_exc() if not high_vram: try: unload_complete_models( text_encoder, text_encoder_2, image_encoder, vae, transformer ) except Exception: pass # 如果已经有生成的视频,返回最后生成的视频 if last_output_filename: stream.output_queue.push(('file', last_output_filename)) # 确保总是返回end信号 stream.output_queue.push(('end', None)) return # 使用Hugging Face Spaces GPU装饰器处理进程函数 if IN_HF_SPACE and 'spaces' in globals(): @spaces.GPU def process_with_gpu(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache): global stream assert input_image is not None, 'No input image!' # 初始化UI状态 yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) try: stream = AsyncStream() # 异步启动worker async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache) output_filename = None prev_output_filename = None # 持续检查worker的输出 while True: try: flag, data = stream.output_queue.next() if flag == 'file': output_filename = data prev_output_filename = output_filename yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True) if flag == 'progress': preview, desc, html = data yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) if flag == 'end': # 如果有最后的视频文件,确保返回 if output_filename is None and prev_output_filename is not None: output_filename = prev_output_filename yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False) break except Exception as e: print(f"处理输出时出错: {e}") # 检查是否长时间没有更新 current_time = time.time() if current_time - last_update_time > 60: # 60秒没有更新,可能卡住了 print(f"处理似乎卡住了,已经 {current_time - last_update_time:.1f} 秒没有更新") # 如果有部分生成的视频,返回 if prev_output_filename: # 创建双语部分视频生成消息 partial_video_msg = f"""
Processing error, but partial video has been generated
处理过程中出现错误,但已生成部分视频
""" yield prev_output_filename, gr.update(visible=False), gr.update(), partial_video_msg, gr.update(interactive=True), gr.update(interactive=False) else: # 创建双语错误消息 error_msg = str(e) en_msg = f"Processing error: {error_msg}" zh_msg = f"处理过程中出现错误: {error_msg}" error_html = f"""
{en_msg}
{zh_msg}
""" yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False) break except Exception as e: print(f"启动处理时出错: {e}") traceback.print_exc() error_msg = str(e) user_friendly_msg = f'处理过程出错: {error_msg}' # 提供更友好的中英文双语错误信息 en_msg = "" zh_msg = "" if "模型下载超时" in error_msg or "网络连接不稳定" in error_msg or "ReadTimeoutError" in error_msg or "ConnectionError" in error_msg: en_msg = "Network connection is unstable, model download timed out. Please try again later." zh_msg = "网络连接不稳定,模型下载超时。请稍后再试。" elif "GPU内存不足" in error_msg or "CUDA out of memory" in error_msg or "OutOfMemoryError" in error_msg: en_msg = "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length." zh_msg = "GPU内存不足,请尝试增加GPU推理保留内存值或降低视频长度。" elif "无法加载模型" in error_msg: en_msg = "Failed to load model, possibly due to network issues or high server load. Please try again later." zh_msg = "模型加载失败,可能是网络问题或服务器负载过高。请稍后再试。" else: en_msg = f"Processing error: {error_msg}" zh_msg = f"处理过程出错: {error_msg}" # 创建双语错误消息HTML bilingual_error = f"""
{en_msg}
{zh_msg}
""" yield None, gr.update(visible=False), gr.update(), bilingual_error, gr.update(interactive=True), gr.update(interactive=False) process = process_with_gpu else: def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache): global stream assert input_image is not None, 'No input image!' # 初始化UI状态 yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) try: stream = AsyncStream() # 异步启动worker async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache) output_filename = None prev_output_filename = None # 持续检查worker的输出 while True: try: flag, data = stream.output_queue.next() if flag == 'file': output_filename = data prev_output_filename = output_filename yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True) if flag == 'progress': preview, desc, html = data yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) if flag == 'end': # 如果有最后的视频文件,确保返回 if output_filename is None and prev_output_filename is not None: output_filename = prev_output_filename yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False) break except Exception as e: print(f"处理输出时出错: {e}") # 检查是否长时间没有更新 current_time = time.time() if current_time - last_update_time > 60: # 60秒没有更新,可能卡住了 print(f"处理似乎卡住了,已经 {current_time - last_update_time:.1f} 秒没有更新") # 如果有部分生成的视频,返回 if prev_output_filename: # 创建中断消息的双语支持 interrupt_msg = f"""
Processing was interrupted, but partial video has been generated
处理过程中断,但已生成部分视频
""" yield prev_output_filename, gr.update(visible=False), gr.update(), interrupt_msg, gr.update(interactive=True), gr.update(interactive=False) break except Exception as e: print(f"启动处理时出错: {e}") traceback.print_exc() error_msg = str(e) user_friendly_msg = f'处理过程出错: {error_msg}' # 提供更友好的中英文双语错误信息 en_msg = "" zh_msg = "" if "模型下载超时" in error_msg or "网络连接不稳定" in error_msg or "ReadTimeoutError" in error_msg or "ConnectionError" in error_msg: en_msg = "Network connection is unstable, model download timed out. Please try again later." zh_msg = "网络连接不稳定,模型下载超时。请稍后再试。" elif "GPU内存不足" in error_msg or "CUDA out of memory" in error_msg or "OutOfMemoryError" in error_msg: en_msg = "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length." zh_msg = "GPU内存不足,请尝试增加GPU推理保留内存值或降低视频长度。" elif "无法加载模型" in error_msg: en_msg = "Failed to load model, possibly due to network issues or high server load. Please try again later." zh_msg = "模型加载失败,可能是网络问题或服务器负载过高。请稍后再试。" else: en_msg = f"Processing error: {error_msg}" zh_msg = f"处理过程出错: {error_msg}" # 创建双语错误消息HTML bilingual_error = f"""
{en_msg}
{zh_msg}
""" yield None, gr.update(visible=False), gr.update(), bilingual_error, gr.update(interactive=True), gr.update(interactive=False) def end_process(): stream.input_queue.push('end') quick_prompts = [ 'The girl dances gracefully, with clear movements, full of charm.', 'A character doing some simple body movements.', ] quick_prompts = [[x] for x in quick_prompts] # 创建一个自定义CSS,增加响应式布局支持 def make_custom_css(): progress_bar_css = make_progress_bar_css() responsive_css = """ /* 基础响应式设置 */ #app-container { max-width: 100%; margin: 0 auto; } /* 语言切换按钮样式 */ #language-toggle { position: fixed; top: 10px; right: 10px; z-index: 1000; background-color: rgba(0, 0, 0, 0.7); color: white; border: none; border-radius: 4px; padding: 5px 10px; cursor: pointer; font-size: 14px; } /* 页面标题样式 */ h1 { font-size: 2rem; text-align: center; margin-bottom: 1rem; } /* 按钮样式 */ .start-btn, .stop-btn { min-height: 45px; font-size: 1rem; } /* 移动设备样式 - 小屏幕 */ @media (max-width: 768px) { h1 { font-size: 1.5rem; margin-bottom: 0.5rem; } /* 单列布局 */ .mobile-full-width { flex-direction: column !important; } .mobile-full-width > .gr-block { min-width: 100% !important; flex-grow: 1; } /* 调整视频大小 */ .video-container { height: auto !important; } /* 调整按钮大小 */ .button-container button { min-height: 50px; font-size: 1rem; touch-action: manipulation; } /* 调整滑块 */ .slider-container input[type="range"] { height: 30px; } } /* 平板设备样式 */ @media (min-width: 769px) and (max-width: 1024px) { .tablet-adjust { width: 48% !important; } } /* 黑暗模式支持 */ @media (prefers-color-scheme: dark) { .dark-mode-text { color: #f0f0f0; } .dark-mode-bg { background-color: #2a2a2a; } } /* 增强可访问性 */ button, input, select, textarea { font-size: 16px; /* 防止iOS缩放 */ } /* 触摸优化 */ button, .interactive-element { min-height: 44px; min-width: 44px; } /* 提高对比度 */ .high-contrast { color: #fff; background-color: #000; } /* 进度条样式增强 */ .progress-container { margin-top: 10px; margin-bottom: 10px; } /* 错误消息样式 */ #error-message { color: #ff4444; font-weight: bold; padding: 10px; border-radius: 4px; margin-top: 10px; background-color: rgba(255, 0, 0, 0.1); } """ # 合并CSS combined_css = progress_bar_css + responsive_css return combined_css css = make_custom_css() block = gr.Blocks(css=css).queue() with block: # 添加语言切换功能 gr.HTML("""
""") # 标题使用data-i18n属性以便JavaScript切换 gr.HTML("

FramePack - Image to Video Generation / 图像到视频生成

") # 使用带有mobile-full-width类的响应式行 with gr.Row(elem_classes="mobile-full-width"): with gr.Column(scale=1, elem_classes="mobile-full-width"): # 添加双语标签 - 上传图像 input_image = gr.Image( sources='upload', type="numpy", label="Upload Image / 上传图像", elem_id="input-image", height=320 ) # 添加双语标签 - 提示词 prompt = gr.Textbox( label="Prompt / 提示词", value='', elem_id="prompt-input" ) # 添加双语标签 - 快速提示词 example_quick_prompts = gr.Dataset( samples=quick_prompts, label='Quick Prompts / 快速提示词列表', samples_per_page=1000, components=[prompt] ) example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False) # 按钮添加样式和双语标签 with gr.Row(elem_classes="button-container"): start_button = gr.Button( value="Generate / 开始生成", elem_classes="start-btn", elem_id="start-button", variant="primary" ) end_button = gr.Button( value="Stop / 结束生成", elem_classes="stop-btn", elem_id="stop-button", interactive=False ) # 参数设置区域 with gr.Group(): use_teacache = gr.Checkbox( label='Use TeaCache / 使用TeaCache', value=True, info='Faster speed, but may result in slightly worse finger and hand generation. / 速度更快,但可能会使手指和手的生成效果稍差。' ) n_prompt = gr.Textbox(label="Negative Prompt / 负面提示词", value="", visible=False) # Not used seed = gr.Number( label="Seed / 随机种子", value=31337, precision=0 ) # 添加slider-container类以便CSS触摸优化 with gr.Group(elem_classes="slider-container"): total_second_length = gr.Slider( label="Video Length (seconds) / 视频长度(秒)", minimum=1, maximum=120, value=5, step=0.1 ) latent_window_size = gr.Slider( label="Latent Window Size / 潜在窗口大小", minimum=1, maximum=33, value=9, step=1, visible=False ) steps = gr.Slider( label="Inference Steps / 推理步数", minimum=1, maximum=100, value=25, step=1, info='Changing this value is not recommended. / 不建议修改此值。' ) cfg = gr.Slider( label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False ) gs = gr.Slider( label="Distilled CFG Scale / 蒸馏CFG比例", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Changing this value is not recommended. / 不建议修改此值。' ) rs = gr.Slider( label="CFG Rescale / CFG重缩放", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False ) gpu_memory_preservation = gr.Slider( label="GPU Memory (GB) / GPU推理保留内存(GB)", minimum=6, maximum=128, value=6, step=0.1, info="Set this to a larger value if you encounter OOM errors. Larger values cause slower speed. / 如果出现OOM错误,请将此值设置得更大。值越大,速度越慢。" ) # 右侧预览和结果列 with gr.Column(scale=1, elem_classes="mobile-full-width"): # 预览图像 preview_image = gr.Image( label="Preview / 预览", height=200, visible=False, elem_classes="preview-container" ) # 视频结果容器 result_video = gr.Video( label="Generated Video / 生成的视频", autoplay=True, show_share_button=True, # 添加分享按钮 height=512, loop=True, elem_classes="video-container", elem_id="result-video" ) # 双语说明 gr.HTML("
Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.
") # 进度指示器 with gr.Group(elem_classes="progress-container"): progress_desc = gr.Markdown('', elem_classes='no-generating-animation') progress_bar = gr.HTML('', elem_classes='no-generating-animation') # 错误信息区域 error_message = gr.Markdown('', elem_id='error-message') # 处理函数 ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache] # 开始和结束按钮事件 start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button]) end_button.click(fn=end_process) block.launch()