File size: 22,841 Bytes
50f328c
 
 
 
 
 
 
 
 
 
 
 
 
 
0f1d758
 
 
 
 
 
 
 
 
 
 
50f328c
 
 
 
 
 
 
cdbfba8
50f328c
 
 
 
 
 
cdbfba8
 
 
 
 
 
 
 
 
 
 
 
 
 
0f1d758
cdbfba8
 
 
 
 
 
 
 
 
 
50f328c
cdbfba8
 
50f328c
0f1d758
 
cdbfba8
 
0f1d758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdbfba8
0f1d758
 
 
 
 
 
 
 
 
 
 
cdbfba8
 
 
 
 
 
 
 
 
 
 
 
 
 
0f1d758
 
 
 
cdbfba8
 
0f1d758
cdbfba8
 
 
 
 
 
0f1d758
cdbfba8
 
 
 
 
 
 
 
 
50f328c
 
cdbfba8
50f328c
 
 
 
cdbfba8
 
 
 
 
 
 
 
 
 
 
50f328c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f1d758
 
 
 
 
 
 
 
 
 
50f328c
0f1d758
50f328c
0f1d758
50f328c
0f1d758
 
50f328c
0f1d758
 
 
50f328c
0f1d758
 
 
50f328c
0f1d758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50f328c
0f1d758
50f328c
0f1d758
 
 
 
 
 
 
 
 
 
 
 
 
 
50f328c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
from diffusers_helper.hf_login import login

import os

os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))

import gradio as gr
import torch
import traceback
import einops
import safetensors.torch as sf
import numpy as np
import math

# 检查是否在Hugging Face Space环境中
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None

# 如果在Hugging Face Space中,导入spaces模块
if IN_HF_SPACE:
    try:
        import spaces
        print("在Hugging Face Space环境中运行,已导入spaces模块")
    except ImportError:
        print("未能导入spaces模块,可能不在Hugging Face Space环境中")

from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete, IN_HF_SPACE as MEMORY_IN_HF_SPACE
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket

outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)

# 在Spaces环境中,我们延迟所有CUDA操作
if not IN_HF_SPACE:
    # 仅在非Spaces环境中获取CUDA内存
    try:
        if torch.cuda.is_available():
            free_mem_gb = get_cuda_free_memory_gb(gpu)
            print(f'Free VRAM {free_mem_gb} GB')
        else:
            free_mem_gb = 6.0  # 默认值
            print("CUDA不可用,使用默认的内存设置")
    except Exception as e:
        free_mem_gb = 6.0  # 默认值
        print(f"获取CUDA内存时出错: {e},使用默认的内存设置")
        
    high_vram = free_mem_gb > 60
    print(f'High-VRAM Mode: {high_vram}')
else:
    # 在Spaces环境中使用默认值
    print("在Spaces环境中使用默认内存设置")
    free_mem_gb = 60.0  # 默认在Spaces中使用较高的值
    high_vram = True
    print(f'High-VRAM Mode: {high_vram}')

# 使用models变量存储全局模型引用
models = {}

# 使用加载模型的函数
def load_models():
    global models
    
    print("开始加载模型...")
    
    # 加载模型
    text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
    text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
    tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
    tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
    vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()

    feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
    image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()

    transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=torch.bfloat16).cpu()

    vae.eval()
    text_encoder.eval()
    text_encoder_2.eval()
    image_encoder.eval()
    transformer.eval()

    if not high_vram:
        vae.enable_slicing()
        vae.enable_tiling()

    transformer.high_quality_fp32_output_for_inference = True
    print('transformer.high_quality_fp32_output_for_inference = True')

    transformer.to(dtype=torch.bfloat16)
    vae.to(dtype=torch.float16)
    image_encoder.to(dtype=torch.float16)
    text_encoder.to(dtype=torch.float16)
    text_encoder_2.to(dtype=torch.float16)

    vae.requires_grad_(False)
    text_encoder.requires_grad_(False)
    text_encoder_2.requires_grad_(False)
    image_encoder.requires_grad_(False)
    transformer.requires_grad_(False)

    if torch.cuda.is_available():
        if not high_vram:
            # DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
            DynamicSwapInstaller.install_model(transformer, device=gpu)
            DynamicSwapInstaller.install_model(text_encoder, device=gpu)
        else:
            text_encoder.to(gpu)
            text_encoder_2.to(gpu)
            image_encoder.to(gpu)
            vae.to(gpu)
            transformer.to(gpu)
    
    # 保存到全局变量
    models = {
        'text_encoder': text_encoder,
        'text_encoder_2': text_encoder_2,
        'tokenizer': tokenizer,
        'tokenizer_2': tokenizer_2,
        'vae': vae,
        'feature_extractor': feature_extractor,
        'image_encoder': image_encoder,
        'transformer': transformer
    }
    
    return models


# 使用Hugging Face Spaces GPU装饰器
if IN_HF_SPACE and 'spaces' in globals():
    @spaces.GPU
    def initialize_models():
        """在@spaces.GPU装饰器内初始化模型"""
        return load_models()


# 以下函数内部会延迟获取模型
def get_models():
    """获取模型,如果尚未加载则加载模型"""
    global models
    
    if not models:
        if IN_HF_SPACE and 'spaces' in globals():
            print("使用@spaces.GPU装饰器加载模型")
            models = initialize_models()
        else:
            print("直接加载模型")
            load_models()
    
    return models


stream = AsyncStream()


@torch.no_grad()
def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
    # 获取模型
    models = get_models()
    text_encoder = models['text_encoder']
    text_encoder_2 = models['text_encoder_2']
    tokenizer = models['tokenizer']
    tokenizer_2 = models['tokenizer_2']
    vae = models['vae']
    feature_extractor = models['feature_extractor']
    image_encoder = models['image_encoder']
    transformer = models['transformer']
    
    total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
    total_latent_sections = int(max(round(total_latent_sections), 1))

    job_id = generate_timestamp()

    stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))

    try:
        # Clean GPU
        if not high_vram:
            unload_complete_models(
                text_encoder, text_encoder_2, image_encoder, vae, transformer
            )

        # Text encoding

        stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))

        if not high_vram:
            fake_diffusers_current_device(text_encoder, gpu)  # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
            load_model_as_complete(text_encoder_2, target_device=gpu)

        llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)

        if cfg == 1:
            llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
        else:
            llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)

        llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
        llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)

        # Processing input image

        stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))

        H, W, C = input_image.shape
        height, width = find_nearest_bucket(H, W, resolution=640)
        input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)

        Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))

        input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
        input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]

        # VAE encoding

        stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))

        if not high_vram:
            load_model_as_complete(vae, target_device=gpu)

        start_latent = vae_encode(input_image_pt, vae)

        # CLIP Vision

        stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))

        if not high_vram:
            load_model_as_complete(image_encoder, target_device=gpu)

        image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
        image_encoder_last_hidden_state = image_encoder_output.last_hidden_state

        # Dtype

        llama_vec = llama_vec.to(transformer.dtype)
        llama_vec_n = llama_vec_n.to(transformer.dtype)
        clip_l_pooler = clip_l_pooler.to(transformer.dtype)
        clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
        image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)

        # Sampling

        stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))

        rnd = torch.Generator("cpu").manual_seed(seed)
        num_frames = latent_window_size * 4 - 3

        history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu()
        history_pixels = None
        total_generated_latent_frames = 0

        latent_paddings = reversed(range(total_latent_sections))

        if total_latent_sections > 4:
            # In theory the latent_paddings should follow the above sequence, but it seems that duplicating some
            # items looks better than expanding it when total_latent_sections > 4
            # One can try to remove below trick and just
            # use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare
            latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]

        for latent_padding in latent_paddings:
            is_last_section = latent_padding == 0
            latent_padding_size = latent_padding * latent_window_size

            if stream.input_queue.top() == 'end':
                stream.output_queue.push(('end', None))
                return

            print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}')

            indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
            clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
            clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)

            clean_latents_pre = start_latent.to(history_latents)
            clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2)
            clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)

            if not high_vram:
                unload_complete_models()
                move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)

            if use_teacache:
                transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
            else:
                transformer.initialize_teacache(enable_teacache=False)

            def callback(d):
                preview = d['denoised']
                preview = vae_decode_fake(preview)

                preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
                preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')

                if stream.input_queue.top() == 'end':
                    stream.output_queue.push(('end', None))
                    raise KeyboardInterrupt('User ends the task.')

                current_step = d['i'] + 1
                percentage = int(100.0 * current_step / steps)
                hint = f'Sampling {current_step}/{steps}'
                desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...'
                stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
                return

            generated_latents = sample_hunyuan(
                transformer=transformer,
                sampler='unipc',
                width=width,
                height=height,
                frames=num_frames,
                real_guidance_scale=cfg,
                distilled_guidance_scale=gs,
                guidance_rescale=rs,
                # shift=3.0,
                num_inference_steps=steps,
                generator=rnd,
                prompt_embeds=llama_vec,
                prompt_embeds_mask=llama_attention_mask,
                prompt_poolers=clip_l_pooler,
                negative_prompt_embeds=llama_vec_n,
                negative_prompt_embeds_mask=llama_attention_mask_n,
                negative_prompt_poolers=clip_l_pooler_n,
                device=gpu,
                dtype=torch.bfloat16,
                image_embeddings=image_encoder_last_hidden_state,
                latent_indices=latent_indices,
                clean_latents=clean_latents,
                clean_latent_indices=clean_latent_indices,
                clean_latents_2x=clean_latents_2x,
                clean_latent_2x_indices=clean_latent_2x_indices,
                clean_latents_4x=clean_latents_4x,
                clean_latent_4x_indices=clean_latent_4x_indices,
                callback=callback,
            )

            if is_last_section:
                generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)

            total_generated_latent_frames += int(generated_latents.shape[2])
            history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)

            if not high_vram:
                offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
                load_model_as_complete(vae, target_device=gpu)

            real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]

            if history_pixels is None:
                history_pixels = vae_decode(real_history_latents, vae).cpu()
            else:
                section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
                overlapped_frames = latent_window_size * 4 - 3

                current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
                history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)

            if not high_vram:
                unload_complete_models()

            output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')

            save_bcthw_as_mp4(history_pixels, output_filename, fps=30)

            print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')

            stream.output_queue.push(('file', output_filename))

            if is_last_section:
                break
    except:
        traceback.print_exc()

        if not high_vram:
            unload_complete_models(
                text_encoder, text_encoder_2, image_encoder, vae, transformer
            )

    stream.output_queue.push(('end', None))
    return


# 使用Hugging Face Spaces GPU装饰器处理进程函数
if IN_HF_SPACE and 'spaces' in globals():
    @spaces.GPU
    def process_with_gpu(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
        global stream
        assert input_image is not None, 'No input image!'

        yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)

        stream = AsyncStream()

        async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)

        output_filename = None

        while True:
            flag, data = stream.output_queue.next()

            if flag == 'file':
                output_filename = data
                yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)

            if flag == 'progress':
                preview, desc, html = data
                yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)

            if flag == 'end':
                yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
                break
    
    process = process_with_gpu
else:
    def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
        global stream
        assert input_image is not None, 'No input image!'

        yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)

        stream = AsyncStream()

        async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)

        output_filename = None

        while True:
            flag, data = stream.output_queue.next()

            if flag == 'file':
                output_filename = data
                yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)

            if flag == 'progress':
                preview, desc, html = data
                yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)

            if flag == 'end':
                yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
                break


def end_process():
    stream.input_queue.push('end')


quick_prompts = [
    'The girl dances gracefully, with clear movements, full of charm.',
    'A character doing some simple body movements.',
]
quick_prompts = [[x] for x in quick_prompts]


css = make_progress_bar_css()
block = gr.Blocks(css=css).queue()
with block:
    gr.Markdown('# FramePack - 图像到视频生成')
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(sources='upload', type="numpy", label="上传图像", height=320)
            prompt = gr.Textbox(label="提示词", value='')
            example_quick_prompts = gr.Dataset(samples=quick_prompts, label='快速提示词列表', samples_per_page=1000, components=[prompt])
            example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)

            with gr.Row():
                start_button = gr.Button(value="开始生成")
                end_button = gr.Button(value="结束生成", interactive=False)

            with gr.Group():
                use_teacache = gr.Checkbox(label='使用TeaCache', value=True, info='速度更快,但可能会使手指和手的生成效果稍差。')

                n_prompt = gr.Textbox(label="负面提示词", value="", visible=False)  # Not used
                seed = gr.Number(label="随机种子", value=31337, precision=0)

                total_second_length = gr.Slider(label="视频长度(秒)", minimum=1, maximum=120, value=5, step=0.1)
                latent_window_size = gr.Slider(label="潜在窗口大小", minimum=1, maximum=33, value=9, step=1, visible=False)  # Should not change
                steps = gr.Slider(label="推理步数", minimum=1, maximum=100, value=25, step=1, info='不建议修改此值。')

                cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False)  # Should not change
                gs = gr.Slider(label="蒸馏CFG比例", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='不建议修改此值。')
                rs = gr.Slider(label="CFG重缩放", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False)  # Should not change

                gpu_memory_preservation = gr.Slider(label="GPU推理保留内存(GB)(值越大速度越慢)", minimum=6, maximum=128, value=6, step=0.1, info="如果出现OOM错误,请将此值设置得更大。值越大,速度越慢。")

        with gr.Column():
            preview_image = gr.Image(label="下一批潜变量", height=200, visible=False)
            result_video = gr.Video(label="生成的视频", autoplay=True, show_share_button=False, height=512, loop=True)
            gr.Markdown('注意:由于采样是倒序的,结束动作将在开始动作之前生成。如果视频中没有出现起始动作,请继续等待,它将在稍后生成。')
            progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
            progress_bar = gr.HTML('', elem_classes='no-generating-animation')
    ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache]
    start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
    end_button.click(fn=end_process)


block.launch()