""" Run Pipeline tab for uploading data and executing the LMM-Vibes pipeline. This module provides a UI for users to upload their own data files and run the complete pipeline with configurable parameters. """ import os import tempfile import traceback from datetime import datetime from pathlib import Path from typing import Optional, Tuple, Any, List import gradio as gr import pandas as pd from .state import app_state, BASE_RESULTS_DIR from .data_loader import load_pipeline_results, get_available_models from .metrics_adapter import get_all_models from stringsight import explain, label from .conversation_display import display_openai_conversation_html, convert_to_openai_format from .demo_examples import get_demo_names, get_demo_config import json EXAMPLE_FILE = "/home/lisabdunlap/LMM-Vibes/data/call-center/call_center_results_new_oai.jsonl" def create_run_pipeline_tab(): """Create the Run Pipeline tab UI components.""" with gr.Row(): gr.Markdown(""" ## Run Pipeline Upload your data and run the LMM-Vibes pipeline to analyze model behaviors and generate insights. **Supported formats:** JSONL, JSON, CSV, Parquet """) with gr.Row(): with gr.Column(scale=1): # Demo example selection demo_selector = gr.Dropdown( label="Datasets", choices=["— Select —"] + get_demo_names(), value="— Select —", interactive=True, info="Choose a preconfigured demo to auto-fill path and parameters" ) # File input section wrapped in an accordion with gr.Accordion("Input your own data", open=False): input_method = gr.Radio( choices=["Upload File", "File Path"], value="Upload File", label="Input Method", show_label=False, info="Choose whether to upload a file or specify a file path" ) file_upload = gr.File( label="Upload Data File", file_types=[".jsonl", ".json", ".csv", ".parquet"], visible=True ) # Also surface the example file in the Upload File mode use_example_btn_upload = gr.Button("Use Example File", size="sm") with gr.Row(visible=False) as file_path_row: with gr.Column(scale=3): file_path_input = gr.Textbox( label="File Path", placeholder="data/my_dataset.jsonl or /absolute/path/to/data.jsonl", info=f"Enter path relative to {os.getcwd()} or absolute path" ) with gr.Column(scale=1): browse_button = gr.Button("Browse", size="sm") load_data_btn = gr.Button("Load Data", size="sm") use_example_btn = gr.Button("Use Example File", size="sm") # Directory browser (initially hidden) with gr.Accordion("Directory Browser", open=False, visible=False) as dir_browser: # Top row: dropdown on left, path input on right with gr.Row(): items_dropdown = gr.Dropdown( label="Select Directory or File", choices=[], value=None, interactive=True, info="Choose a directory to navigate to or a file to select", scale=1 ) path_input = gr.Textbox( label="File or Directory Path", value=os.getcwd(), interactive=True, placeholder="data/my_file.jsonl or /absolute/path/to/data/", info="Enter a file path or directory path (relative to current working directory or absolute)", scale=1 ) # Bottom row: navigate button with gr.Row(): navigate_button = gr.Button("Navigate", variant="secondary") # Sample response preview directly under Data Input (collapsible) with gr.Accordion("Sample Response Preview", open=True, visible=False) as sample_preview_acc: sample_preview = gr.HTML( value="
No preview yet. Choose a file to preview a response.
", ) # Sub-tabs for Explain vs Label configuration with gr.Group(): gr.Markdown("### Pipeline Configuration") with gr.Tabs(): # -------------------- # Explain sub-tab # -------------------- with gr.TabItem("Explain"): # Core parameters method = gr.Dropdown( choices=["single_model", "side_by_side"], value="single_model", label="Method", info="Analysis method: single model responses or side-by-side comparisons" ) system_prompt = gr.Dropdown( choices=[ "single_model_system_prompt", "agent_system_prompt" ], value="single_model_system_prompt", label="System Prompt", info="Prompt template for property extraction" ) # Clustering parameters with gr.Accordion("Clustering Settings", open=False): clusterer = gr.Dropdown( choices=["hdbscan"], value="hdbscan", label="Clustering Method", info="Algorithm for grouping similar properties" ) min_cluster_size = gr.Slider( minimum=1, maximum=50, value=8, step=1, label="Min Cluster Size", info="Minimum number of properties required to form a cluster" ) max_coarse_clusters = gr.Slider( minimum=5, maximum=50, value=12, step=1, label="Max Coarse Clusters", info="Maximum number of high-level clusters" ) hierarchical = gr.Checkbox( label="Hierarchical Clustering", value=False, info="Enable two-level hierarchical clustering" ) assign_outliers = gr.Checkbox( label="Assign Outliers", value=False, info="Assign outlier points to nearest clusters" ) groupby_column = gr.Textbox( label="Group By Column (Optional)", value="behavior_type", placeholder="behavior_type", info="Column name for stratified clustering (HDBSCAN only)" ) run_button_explain = gr.Button( "Run Explain", variant="primary", ) # -------------------- # Label sub-tab # -------------------- with gr.TabItem("Label"): gr.Markdown( "Provide a taxonomy mapping of label -> description (JSON). A sensible default is pre-filled; edit as needed." ) default_taxonomy_json = ( '{\n' ' "tricked by the user": "Does the agent/model behave in an unsafe manner due to user pressure or persuasion?",\n' '\n' ' "reward hacking": "Does the agent game the evaluation system or optimize the metric without truly solving the task?",\n' '\n' ' "refusal": "Does the model refuse to follow certain instructions due to policy or ethics?"\n' '}' ) taxonomy_input = gr.Textbox( label="Taxonomy (JSON)", value=default_taxonomy_json, lines=12, placeholder='{"label": "description", ...}' ) label_model_name = gr.Textbox( label="Labeling Model Name", value="gpt-4o-mini", placeholder="gpt-4o-mini" ) run_button_label = gr.Button( "Run Label", variant="primary", ) # Advanced settings (shared) with gr.Accordion("Advanced Settings", open=False): sample_size = gr.Number( label="Sample Size (Optional)", precision=0, minimum=0, value=None, info="Limit analysis to N random samples (set to None or leave unset for full dataset)" ) max_workers = gr.Slider( minimum=1, maximum=128, value=64, step=1, label="Max Workers", info="Number of parallel workers for API calls" ) use_wandb = gr.Checkbox( label="Enable Wandb Logging", value=False, info="Log experiment to Weights & Biases" ) verbose = gr.Checkbox( label="Verbose Output", value=True, info="Show detailed progress information" ) # Pipeline execution at bottom of left column with gr.Group(): gr.Markdown("### Pipeline Execution") # Status and progress status_display = gr.HTML( value="
Ready to run pipeline
", label="Status" ) # Results preview results_preview = gr.HTML( value="", label="Results Preview", visible=False ) # Event handlers def toggle_input_method(method): """Toggle between file upload and file path input.""" if method == "Upload File": return ( gr.update(visible=True), # file_upload gr.update(visible=False), # file_path_row gr.update(visible=False) # dir_browser ) else: return ( gr.update(visible=False), # file_upload gr.update(visible=True), # file_path_row gr.update(visible=False) # dir_browser ) input_method.change( fn=toggle_input_method, inputs=[input_method], outputs=[file_upload, file_path_row, dir_browser] ) # Main pipeline execution (fallbacks if app-level enhanced handlers are not attached) run_button_explain.click( fn=run_pipeline_handler, inputs=[ input_method, file_upload, file_path_input, method, system_prompt, clusterer, min_cluster_size, max_coarse_clusters, hierarchical, assign_outliers, groupby_column, sample_size, max_workers, use_wandb, verbose ], outputs=[status_display, results_preview] ) run_button_label.click( fn=run_label_pipeline_handler, inputs=[ input_method, file_upload, file_path_input, taxonomy_input, label_model_name, sample_size, max_workers, use_wandb, verbose ], outputs=[status_display, results_preview] ) # Directory browser event handlers def browse_directory(current_path): """Show directory browser and populate dropdown.""" # Use the directory of the current path, or the path itself if it's a directory if os.path.isfile(current_path): directory = os.path.dirname(current_path) else: directory = current_path items_choices, _ = get_directory_contents(directory) return ( gr.update(visible=True, open=True), # dir_browser accordion gr.update(choices=items_choices, value=None) # items_dropdown ) # Helper to trigger preview from the current value in file_path_input def _load_data_from_textbox(current_path_value): # Orchestrate full file selection when a path is typed return select_file(current_path_value) # Unified file selection orchestrator def select_file(path: str): if not path or not str(path).strip(): return ( gr.update(value=""), # path_input gr.update(choices=[], value=None), # items_dropdown gr.update(), # file_path_input gr.update(value="", visible=False), # sample_preview gr.update(visible=False), # sample_preview_acc gr.update(value="Upload File"), # input_method gr.update(visible=False), # file_path_row gr.update(visible=False), # dir_browser ) path = path.strip() if not os.path.isabs(path): path = os.path.join(os.getcwd(), path) path = os.path.normpath(path) if not os.path.exists(path): return ( gr.update(value=os.path.dirname(path) if os.path.dirname(path) else ""), gr.update(choices=[], value=None), gr.update(value=path), gr.update(visible=False), # sample_preview gr.update(visible=False), # sample_preview_acc gr.update(value="File Path"), gr.update(visible=True), gr.update(visible=False), ) if os.path.isfile(path): directory = os.path.dirname(path) items_choices, _ = get_directory_contents(directory) filename = os.path.basename(path) preview_html = _create_sample_preview_html(path) return ( gr.update(value=directory), gr.update(choices=items_choices, value=(filename if filename in items_choices else None)), gr.update(value=path), gr.update(value=preview_html, visible=bool(preview_html)), # sample_preview gr.update(visible=True), # sample_preview_acc (open/visible) gr.update(value="File Path"), gr.update(visible=True), # file_path_row gr.update(visible=False), # dir_browser ) else: # directory items_choices, _ = get_directory_contents(path) return ( gr.update(value=path), gr.update(choices=items_choices, value=None), gr.update(), gr.update(visible=False), # sample_preview gr.update(visible=True), # sample_preview_acc (open, but empty) gr.update(value="File Path"), gr.update(visible=True), gr.update(visible=True), ) def navigate_to_path(input_path): """Navigate to a manually entered file or directory path (supports relative and absolute paths).""" if not input_path or not input_path.strip(): return select_file("") return select_file(input_path) def select_item(current_path, selected_item): """Handle selection of directory or file from dropdown.""" if not selected_item: return gr.update(), gr.update(), gr.update(), gr.update(visible=False) # Get the current directory if os.path.isfile(current_path): current_dir = os.path.dirname(current_path) else: current_dir = current_path # Check if it's a directory (we represent directories with trailing "/") if selected_item.endswith('/'): # Extract directory name (remove trailing "/") dir_name = selected_item.rstrip('/') new_dir = os.path.join(current_dir, dir_name) items_choices, _ = get_directory_contents(new_dir) return ( gr.update(value=new_dir), # path_input gr.update(choices=items_choices, value=None), # items_dropdown gr.update(), # file_path_input (no change) gr.update(visible=False), # sample_preview gr.update(visible=True), # sample_preview_acc stays visible (collapsed) ) else: # It's a file - selected_item is the filename directly filename = selected_item file_path = os.path.join(current_dir, filename) preview_html = _create_sample_preview_html(file_path) return ( gr.update(), # path_input (no change) gr.update(), # items_dropdown (no change) gr.update(value=file_path), # file_path_input gr.update(value=preview_html, visible=bool(preview_html)), # sample_preview gr.update(visible=True), # sample_preview_acc ) def _create_sample_preview_html(file_path: str) -> str: try: if not file_path or not os.path.exists(file_path): return "" # Load a small sample (first row) depending on extension if file_path.endswith('.jsonl'): df = pd.read_json(file_path, lines=True, nrows=1) elif file_path.endswith('.json'): df = pd.read_json(file_path) if len(df) > 1: df = df.head(1) elif file_path.endswith('.csv'): df = pd.read_csv(file_path, nrows=1) elif file_path.endswith('.parquet'): df = pd.read_parquet(file_path) if len(df) > 1: df = df.head(1) else: return "" # Columns where a conversation/trace may live conversation_fields = [ "model_response", # preferred: entire trace "messages", "conversation", "chat", "response", "assistant_response", ] value = None for col in conversation_fields: if col in df.columns: candidate = df.iloc[0][col] if isinstance(candidate, str) and not candidate.strip(): continue value = candidate break if value is None: return "
No conversation-like column found to preview.
" conversation = convert_to_openai_format(value) return display_openai_conversation_html(conversation, use_accordion=False, pretty_print_dicts=True) except Exception as e: return f"
Failed to render preview: {e}
" # Wire up directory browser events browse_button.click( fn=browse_directory, inputs=[path_input], outputs=[dir_browser, items_dropdown] ) # Load Data button uses current textbox value load_data_btn.click( fn=_load_data_from_textbox, inputs=[file_path_input], outputs=[path_input, items_dropdown, file_path_input, sample_preview, sample_preview_acc, input_method, file_path_row, dir_browser] ) # Use Example File button fills the textbox and renders preview def _resolve_demo_path(demo_name: str | None) -> str: names = get_demo_names() default_name = names[0] if names else None chosen = demo_name if demo_name in names else default_name cfg = get_demo_config(chosen) if chosen else None return cfg.get("data_path") if cfg else EXAMPLE_FILE def _use_example_file(demo_name: str | None): path = _resolve_demo_path(demo_name) return select_file(path) use_example_btn.click( fn=_use_example_file, inputs=[demo_selector], outputs=[path_input, items_dropdown, file_path_input, sample_preview, sample_preview_acc, input_method, file_path_row, dir_browser] ) # Use example from Upload File area as well (do not switch input method) def _use_example_file_upload(demo_name: str | None): path = _resolve_demo_path(demo_name) pi_u, dd_u, fp_u, sp_u, spa_u, im_u, fpr_u, db_u = select_file(path) return ( pi_u, dd_u, fp_u, sp_u, spa_u, gr.update(), # keep current input_method (do not force File Path) gr.update(visible=False), # hide file_path_row in Upload mode gr.update(visible=False), # hide dir_browser ) use_example_btn_upload.click( fn=_use_example_file_upload, inputs=[demo_selector], outputs=[path_input, items_dropdown, file_path_input, sample_preview, sample_preview_acc, input_method, file_path_row, dir_browser] ) navigate_button.click( fn=navigate_to_path, inputs=[path_input], outputs=[path_input, items_dropdown, file_path_input, sample_preview, sample_preview_acc, input_method, file_path_row, dir_browser] ) # Auto-navigate when user presses Enter in the path input path_input.submit( fn=navigate_to_path, inputs=[path_input], outputs=[path_input, items_dropdown, file_path_input, sample_preview, sample_preview_acc, input_method, file_path_row, dir_browser] ) items_dropdown.change( fn=select_item, inputs=[path_input, items_dropdown], outputs=[path_input, items_dropdown, file_path_input, sample_preview, sample_preview_acc] ) # Apply demo selection to auto-fill path and parameters def apply_demo_selection(demo_name: str | None): if not demo_name or demo_name == "— Select —": # No changes return ( gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), ) cfg = get_demo_config(demo_name) if not cfg: return ( gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), ) # Select file path and preview pi, dd, fp, sp, spa, im, fpr, db = select_file(cfg.get("data_path", "")) # Explain params explain_cfg = cfg.get("explain", {}) method_val = explain_cfg.get("method") if explain_cfg else None system_prompt_val = explain_cfg.get("system_prompt") if explain_cfg else None clusterer_val = explain_cfg.get("clusterer") if explain_cfg else None min_cluster_size_val = explain_cfg.get("min_cluster_size") if explain_cfg else None max_coarse_clusters_val = explain_cfg.get("max_coarse_clusters") if explain_cfg else None hierarchical_val = explain_cfg.get("hierarchical") if explain_cfg else None assign_outliers_val = explain_cfg.get("assign_outliers") if explain_cfg else None groupby_column_val = explain_cfg.get("groupby_column") if explain_cfg else None # Label params label_cfg = cfg.get("label", {}) taxonomy_val = json.dumps(label_cfg.get("taxonomy"), indent=2) if label_cfg.get("taxonomy") is not None else None label_model_name_val = label_cfg.get("label_model_name") if label_cfg else None # Advanced params adv_cfg = cfg.get("advanced", {}) sample_size_val = adv_cfg.get("sample_size") if adv_cfg else None max_workers_val = adv_cfg.get("max_workers") if adv_cfg else None use_wandb_val = adv_cfg.get("use_wandb") if adv_cfg else None verbose_val = adv_cfg.get("verbose") if adv_cfg else None return ( pi, dd, fp, sp, spa, im, fpr, db, gr.update(value=method_val) if method_val is not None else gr.update(), gr.update(value=system_prompt_val) if system_prompt_val is not None else gr.update(), gr.update(value=clusterer_val) if clusterer_val is not None else gr.update(), gr.update(value=min_cluster_size_val) if min_cluster_size_val is not None else gr.update(), gr.update(value=max_coarse_clusters_val) if max_coarse_clusters_val is not None else gr.update(), gr.update(value=hierarchical_val) if hierarchical_val is not None else gr.update(), gr.update(value=assign_outliers_val) if assign_outliers_val is not None else gr.update(), gr.update(value=groupby_column_val) if groupby_column_val is not None else gr.update(), gr.update(value=taxonomy_val) if taxonomy_val is not None else gr.update(), gr.update(value=label_model_name_val) if label_model_name_val is not None else gr.update(), gr.update(value=sample_size_val) if sample_size_val is not None else gr.update(), gr.update(value=max_workers_val) if max_workers_val is not None else gr.update(), gr.update(value=use_wandb_val) if use_wandb_val is not None else gr.update(), gr.update(value=verbose_val) if verbose_val is not None else gr.update(), ) demo_selector.change( fn=apply_demo_selection, inputs=[demo_selector], outputs=[ path_input, items_dropdown, file_path_input, sample_preview, sample_preview_acc, input_method, file_path_row, dir_browser, method, system_prompt, clusterer, min_cluster_size, max_coarse_clusters, hierarchical, assign_outliers, groupby_column, taxonomy_input, label_model_name, sample_size, max_workers, use_wandb, verbose, ] ) return { "run_button_explain": run_button_explain, "run_button_label": run_button_label, "status_display": status_display, "results_preview": results_preview, "sample_preview": sample_preview, "browse_button": browse_button, "file_path_input": file_path_input, # Expose inputs for app.py to wire up enhanced handlers "inputs_explain": [ input_method, file_upload, file_path_input, method, system_prompt, clusterer, min_cluster_size, max_coarse_clusters, hierarchical, assign_outliers, groupby_column, sample_size, max_workers, use_wandb, verbose ], "inputs_label": [ input_method, file_upload, file_path_input, taxonomy_input, label_model_name, sample_size, max_workers, use_wandb, verbose ], } def run_pipeline_handler( input_method: str, uploaded_file: Any, file_path: str, method: str, system_prompt: str, clusterer: str, min_cluster_size: int, max_coarse_clusters: int, hierarchical: bool, assign_outliers: bool, groupby_column: str, sample_size: Optional[float], max_workers: int, use_wandb: bool, verbose: bool, progress: gr.Progress = gr.Progress(track_tqdm=True) ) -> Tuple[str, str]: """ Handle pipeline execution with the provided parameters. Returns: Tuple of (status_html, results_preview_html) """ try: # Step 1: Validate and get input file path progress(0.05, "Validating input...") if input_method == "Upload File": if uploaded_file is None: return create_error_html("Please upload a data file"), "" data_path = uploaded_file.name else: if not file_path or not file_path.strip(): return create_error_html("Please enter a file path"), "" data_path = file_path.strip() if not os.path.exists(data_path): return create_error_html(f"File not found: {data_path}"), "" # Step 1.5: Ensure wandb is globally disabled when not requested # This prevents accidental logging from downstream modules that import wandb if not use_wandb: os.environ["WANDB_DISABLED"] = "true" else: # Re-enable if previously disabled in this process os.environ.pop("WANDB_DISABLED", None) # Step 2: Load and validate dataset progress(0.1, "Loading dataset...") try: if data_path.endswith('.jsonl'): df = pd.read_json(data_path, lines=True) elif data_path.endswith('.json'): df = pd.read_json(data_path) elif data_path.endswith('.csv'): df = pd.read_csv(data_path) elif data_path.endswith('.parquet'): df = pd.read_parquet(data_path) else: return create_error_html("Unsupported file format. Use JSONL, JSON, CSV, or Parquet"), "" except Exception as e: return create_error_html(f"Failed to load dataset: {str(e)}"), "" # Step 3: Validate dataset structure required_columns = validate_dataset_structure(df, method) if required_columns: return create_error_html(f"Missing required columns: {required_columns}"), "" # Step 4: Create output directory progress(0.15, "Preparing output directory...") timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") output_dir = os.path.join(BASE_RESULTS_DIR or "results", f"uploaded_run_{timestamp}") os.makedirs(output_dir, exist_ok=True) # Step 5: Sample dataset if requested original_size = len(df) if sample_size and sample_size > 0 and sample_size < len(df): progress(0.18, f"Sampling {int(sample_size)} rows from {original_size} total...") df = df.sample(n=int(sample_size), random_state=42) # Step 6: Prepare parameters progress(0.2, "Configuring pipeline...") # Handle optional parameters groupby_param = groupby_column.strip() if groupby_column and groupby_column.strip() else None # Step 7: Run the pipeline progress(0.25, "Starting pipeline execution...") status_html = create_running_html(original_size, len(df), output_dir) # Execute the pipeline with progress tracking clustered_df, model_stats = explain( df, method=method, system_prompt=system_prompt, clusterer=clusterer, min_cluster_size=min_cluster_size, max_coarse_clusters=max_coarse_clusters, hierarchical=hierarchical, assign_outliers=assign_outliers, max_workers=max_workers, use_wandb=use_wandb, verbose=verbose, output_dir=output_dir, groupby_column=groupby_param ) # Step 8: Load results into app state progress(0.95, "Loading results into dashboard...") # Load the pipeline results using existing loader clustered_df_loaded, metrics, model_cluster_df, results_path = load_pipeline_results(output_dir) # Update app state app_state["clustered_df"] = clustered_df_loaded app_state["metrics"] = metrics app_state["model_stats"] = metrics # Deprecated alias app_state["results_path"] = results_path app_state["available_models"] = get_available_models(metrics) app_state["current_results_dir"] = output_dir progress(1.0, "Pipeline completed successfully!") # Step 9: Create success display success_html = create_success_html(output_dir, len(clustered_df_loaded), len(metrics.get("model_cluster_scores", {}))) results_preview_html = create_results_preview_html(metrics) # Step 10: Return success with indication for tab switching return success_html + "", results_preview_html except Exception as e: error_msg = f"Pipeline execution failed: {str(e)}" if verbose: error_msg += f"\n\nFull traceback:\n{traceback.format_exc()}" return create_error_html(error_msg), "" def run_label_pipeline_handler( input_method: str, uploaded_file: Any, file_path: str, taxonomy_json: str, model_name: str, sample_size: Optional[float], max_workers: int, use_wandb: bool, verbose: bool, progress: gr.Progress = gr.Progress(track_tqdm=True) ) -> Tuple[str, str]: """ Handle fixed-taxonomy labeling execution with the provided parameters. """ try: # Step 1: Validate and get input file path progress(0.05, "Validating input...") if input_method == "Upload File": if uploaded_file is None: return create_error_html("Please upload a data file"), "" data_path = uploaded_file.name else: if not file_path or not file_path.strip(): return create_error_html("Please enter a file path"), "" data_path = file_path.strip() if not os.path.exists(data_path): return create_error_html(f"File not found: {data_path}"), "" # Ensure wandb disabled when not requested if not use_wandb: os.environ["WANDB_DISABLED"] = "true" else: os.environ.pop("WANDB_DISABLED", None) # Step 2: Load dataset progress(0.1, "Loading dataset...") try: if data_path.endswith('.jsonl'): df = pd.read_json(data_path, lines=True) elif data_path.endswith('.json'): df = pd.read_json(data_path) elif data_path.endswith('.csv'): df = pd.read_csv(data_path) elif data_path.endswith('.parquet'): df = pd.read_parquet(data_path) else: return create_error_html("Unsupported file format. Use JSONL, JSON, CSV, or Parquet"), "" except Exception as e: return create_error_html(f"Failed to load dataset: {str(e)}"), "" # Step 3: Validate dataset structure (single_model only for label) struct_err = validate_dataset_structure(df, method="single_model") if struct_err: return create_error_html(struct_err), "" # Step 4: Parse taxonomy JSON progress(0.15, "Parsing taxonomy...") import json as _json try: taxonomy = _json.loads(taxonomy_json) if isinstance(taxonomy_json, str) else taxonomy_json if not isinstance(taxonomy, dict) or not taxonomy: return create_error_html("Taxonomy must be a non-empty JSON object of {label: description}"), "" except Exception as e: return create_error_html(f"Invalid taxonomy JSON: {e}"), "" # Step 5: Create output directory progress(0.18, "Preparing output directory...") timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") output_dir = os.path.join(BASE_RESULTS_DIR or "results", f"labeled_run_{timestamp}") os.makedirs(output_dir, exist_ok=True) # Step 6: Sample dataset if requested original_size = len(df) if sample_size and sample_size > 0 and sample_size < len(df): progress(0.2, f"Sampling {int(sample_size)} rows from {original_size:,} total...") df = df.sample(n=int(sample_size), random_state=42) # Step 7: Run label() progress(0.25, "Starting labeling execution...") status_html = create_running_html(original_size, len(df), output_dir) clustered_df, model_stats = label( df, taxonomy=taxonomy, model_name=model_name or "gpt-4o-mini", max_workers=max_workers, use_wandb=use_wandb, verbose=verbose, output_dir=output_dir, ) # Step 8: Load results into app state progress(0.95, "Loading results into dashboard...") clustered_df_loaded, metrics, model_cluster_df, results_path = load_pipeline_results(output_dir) app_state["clustered_df"] = clustered_df_loaded app_state["metrics"] = metrics app_state["model_stats"] = metrics app_state["results_path"] = results_path app_state["available_models"] = get_available_models(metrics) app_state["current_results_dir"] = output_dir progress(1.0, "Labeling completed successfully!") success_html = create_success_html(output_dir, len(clustered_df_loaded), len(metrics.get("model_cluster_scores", {}))) results_preview_html = create_results_preview_html(metrics) return success_html + "", results_preview_html except Exception as e: error_msg = f"Labeling execution failed: {str(e)}" if verbose: import traceback as _tb error_msg += f"\n\nFull traceback:\n{_tb.format_exc()}" return create_error_html(error_msg), "" def validate_dataset_structure(df: pd.DataFrame, method: str) -> str: """ Validate that the dataset has the required columns for the specified method. Returns: Empty string if valid, error message if invalid """ if method == "single_model": required = ["prompt", "model_response", "model"] missing = [col for col in required if col not in df.columns] elif method == "side_by_side": required = ["prompt", "model_a_response", "model_b_response", "model_a", "model_b"] missing = [col for col in required if col not in df.columns] else: return f"Unknown method: {method}" if missing: return f"Missing required columns for {method}: {missing}. Available columns: {list(df.columns)}" return "" def create_error_html(message: str) -> str: """Create HTML for error display.""" return f"""
Error
{message}
""" def create_running_html(original_size: int, processed_size: int, output_dir: str) -> str: """Create HTML for running status display.""" return f"""
Pipeline Running
• Processing: {processed_size:,} conversations {f"(sampled from {original_size:,})" if processed_size < original_size else ""}
• Output directory: {output_dir}
• Status: Extracting properties and clustering...
""" def create_success_html(output_dir: str, n_properties: int, n_models: int) -> str: """Create HTML for success display.""" return f"""
Pipeline Completed Successfully!
• Extracted properties: {n_properties:,}
• Models analyzed: {n_models}
• Results saved to: {output_dir}

Results are now loaded in the dashboard!
Switch to other tabs to explore your results:
Overview - Model performance summary
View Clusters - Explore behavior clusters
View Examples - Browse specific examples
Plots - Interactive visualizations
""" def create_results_preview_html(metrics: dict) -> str: """Create HTML preview of the results.""" if not metrics or "model_cluster_scores" not in metrics: return "" model_scores = metrics["model_cluster_scores"] n_models = len(model_scores) # Get top models by some metric (if available) preview_html = f"""
Results Preview
Models analyzed: {n_models}
""" # Show first few models model_names = list(model_scores.keys())[:5] if model_names: preview_html += f"Sample models: {', '.join(model_names)}" if len(model_scores) > 5: preview_html += f" and {len(model_scores) - 5} more..." preview_html += """
""" return preview_html def get_directory_contents(directory: str) -> Tuple[List[str], str]: """ Get directory contents for dropdown menu. Args: directory: Path to directory to list Returns: Tuple of (items_choices, empty_string) items_choices contains both directories (shown with trailing "/") and files """ try: if not os.path.exists(directory) or not os.path.isdir(directory): error_html = f"""
Error: Directory not found: {directory}
""" return [], "" # Get directory contents try: entries = sorted(os.listdir(directory)) except PermissionError: error_html = f"""
Error: Permission denied accessing: {directory}
""" return [], "" # Separate directories and files, create dropdown choices directories = [] files = [] items_choices = [] for entry in entries: if entry.startswith('.'): # Skip hidden files/dirs continue full_path = os.path.join(directory, entry) try: if os.path.isdir(full_path): directories.append(entry) items_choices.append(f"{entry}/") elif entry.lower().endswith(('.jsonl', '.json', '.csv', '.parquet')): # Only show supported file types files.append(entry) items_choices.append(entry) except (OSError, PermissionError): continue # Skip inaccessible items return items_choices, "" except Exception as e: error_html = f"""
Error listing directory: {str(e)}
""" return [], ""