File size: 7,218 Bytes
1af0726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
"""Logic for the **View Examples** tab – dropdown population + example renderer."""
from __future__ import annotations

from typing import Any, List, Tuple, Optional

import gradio as gr
import ast

from .state import app_state
from .utils import (
    get_unique_values_for_dropdowns,
    get_example_data,
    format_examples_display,
    search_clusters_by_text,
)

__all__: List[str] = [
    "get_dropdown_choices",
    "update_example_dropdowns",
    "view_examples",
    "get_filter_options",
    "update_filter_dropdowns",
]


# ---------------------------------------------------------------------------
# Dropdown helpers
# ---------------------------------------------------------------------------

def get_dropdown_choices(selected_models: Optional[List[str]] = None) -> Tuple[List[str], List[str], List[str]]:
    if app_state["clustered_df"] is None:
        return [], [], []

    choices = get_unique_values_for_dropdowns(app_state["clustered_df"])
    prompts = ["All Prompts"] + choices["prompts"]
    # If a sidebar selection is provided, filter models to that subset (ignoring the pseudo 'all')
    if selected_models:
        subset = [m for m in choices["models"] if m in [sm for sm in selected_models if sm != "all"]]
        models = ["All Models"] + (subset if subset else choices["models"])  # fallback to all available if subset empty
    else:
        models = ["All Models"] + choices["models"]
    properties = ["All Clusters"] + choices["properties"]
    return prompts, models, properties


def update_example_dropdowns(selected_models: Optional[List[str]] = None) -> Tuple[Any, Any, Any]:
    prompts, models, properties = get_dropdown_choices(selected_models)
    # If exactly one concrete model selected in sidebar, preselect it; else default to All Models
    preselect_model = "All Models"
    if selected_models:
        concrete = [m for m in selected_models if m != "all"]
        if len(concrete) == 1 and concrete[0] in models:
            preselect_model = concrete[0]
    return (
        gr.update(choices=prompts, value="All Prompts" if prompts else None),
        gr.update(choices=models, value=(preselect_model if models else None)),
        gr.update(choices=properties, value="All Clusters" if properties else None),
    )


# ---------------------------------------------------------------------------
# Example viewer
# ---------------------------------------------------------------------------

def view_examples(
    selected_prompt: str,
    selected_model: str,
    selected_property: str,
    max_examples: int = 5,
    use_accordion: bool = True,
    pretty_print_dicts: bool = True,
    search_term: str = "",
    show_unexpected_behavior: bool = False,
    selected_models_sidebar: Optional[List[str]] = None,
    selected_tags_sidebar: Optional[List[str]] = None,
) -> str:
    if app_state["clustered_df"] is None:
        return (
            "<p style='color: #e74c3c; padding: 20px;'>❌ Please load data first "
            "using the 'Load Data' tab</p>"
        )

    # Apply search filter first if search term is provided
    df = app_state["clustered_df"]

    # Apply sidebar-selected model filter if provided (ignoring pseudo 'all') before dropdown filters
    if selected_models_sidebar:
        concrete = [m for m in selected_models_sidebar if m != "all"]
        if concrete:
            df = df[df["model"].isin(concrete)]
            if df.empty:
                return "<p style='color: #e74c3c; padding: 20px;'>❌ No examples for the selected model subset.</p>"
    if search_term and isinstance(search_term, str) and search_term.strip():
        df = search_clusters_by_text(df, search_term.strip(), 'all')
        if df.empty:
            return f"<p style='color: #e74c3c; padding: 20px;'>❌ No clusters found matching '{search_term}'</p>"

    # Optional tags filter (sidebar): include rows whose first meta value is in selected tags
    if selected_tags_sidebar and len(selected_tags_sidebar) > 0 and 'meta' in df.columns:
        def _parse_meta(obj: Any) -> Any:
            if isinstance(obj, str):
                try:
                    return ast.literal_eval(obj)
                except Exception:
                    return obj
            return obj

        def _first_val(obj: Any) -> Any:
            if obj is None:
                return None
            obj = _parse_meta(obj)
            if isinstance(obj, dict):
                for _, v in obj.items():
                    return v
                return None
            if isinstance(obj, (list, tuple)):
                return obj[0] if len(obj) > 0 else None
            return obj

        parsed_meta = df['meta'].apply(_parse_meta)
        non_null_parsed = [m for m in parsed_meta.tolist() if m is not None]
        all_empty_dicts = (
            len(non_null_parsed) > 0 and all(isinstance(m, dict) and len(m) == 0 for m in non_null_parsed)
        )

        if not all_empty_dicts:
            allowed = set(map(str, selected_tags_sidebar))
            df = df[df['meta'].apply(_first_val).astype(str).isin(allowed)]
        if df.empty:
            return "<p style='color: #e74c3c; padding: 20px;'>❌ No examples found for selected tags</p>"

    examples = get_example_data(
        df,
        selected_prompt if selected_prompt != "All Prompts" else None,
        selected_model if selected_model != "All Models" else None,
        selected_property if selected_property != "All Clusters" else None,
        max_examples,
        show_unexpected_behavior=show_unexpected_behavior,
        randomize=(
            (selected_prompt == "All Prompts") and
            (selected_model == "All Models") and
            (selected_property == "All Clusters") and
            (not search_term or not str(search_term).strip())
        ),
    )

    return format_examples_display(
        examples,
        selected_prompt,
        selected_model,
        selected_property,
        use_accordion=use_accordion,
        pretty_print_dicts=pretty_print_dicts,
    )


# ---------------------------------------------------------------------------
# Filter dropdown helpers for frequency comparison
# ---------------------------------------------------------------------------

def get_filter_options() -> Tuple[List[str], List[str]]:
    if not app_state["model_stats"]:
        return ["All Models"], ["All Metrics"]

    available_models = ["All Models"] + list(app_state["model_stats"].keys())

    quality_metrics = set()
    for model_data in app_state["model_stats"].values():
        clusters = model_data.get("fine", []) + model_data.get("coarse", [])
        for cluster in clusters:
            quality_score = cluster.get("quality_score", {})
            if isinstance(quality_score, dict):
                quality_metrics.update(quality_score.keys())

    available_metrics = ["All Metrics"] + sorted(list(quality_metrics))

    return available_models, available_metrics


def update_filter_dropdowns() -> Tuple[Any, Any]:
    models, metrics = get_filter_options()
    return (
        gr.update(choices=models, value="All Models" if models else None),
        gr.update(choices=metrics, value="All Metrics" if metrics else None),
    )