Spaces:
Running
Running
File size: 45,940 Bytes
1af0726 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 |
"""
Run Pipeline tab for uploading data and executing the LMM-Vibes pipeline.
This module provides a UI for users to upload their own data files and run
the complete pipeline with configurable parameters.
"""
import os
import tempfile
import traceback
from datetime import datetime
from pathlib import Path
from typing import Optional, Tuple, Any, List
import gradio as gr
import pandas as pd
from .state import app_state, BASE_RESULTS_DIR
from .data_loader import load_pipeline_results, get_available_models
from .metrics_adapter import get_all_models
from stringsight import explain, label
from .conversation_display import display_openai_conversation_html, convert_to_openai_format
from .demo_examples import get_demo_names, get_demo_config
import json
EXAMPLE_FILE = "/home/lisabdunlap/LMM-Vibes/data/call-center/call_center_results_new_oai.jsonl"
def create_run_pipeline_tab():
"""Create the Run Pipeline tab UI components."""
with gr.Row():
gr.Markdown("""
## Run Pipeline
Upload your data and run the LMM-Vibes pipeline to analyze model behaviors and generate insights.
**Supported formats:** JSONL, JSON, CSV, Parquet
""")
with gr.Row():
with gr.Column(scale=1):
# Demo example selection
demo_selector = gr.Dropdown(
label="Datasets",
choices=["β Select β"] + get_demo_names(),
value="β Select β",
interactive=True,
info="Choose a preconfigured demo to auto-fill path and parameters"
)
# File input section wrapped in an accordion
with gr.Accordion("Input your own data", open=False):
input_method = gr.Radio(
choices=["Upload File", "File Path"],
value="Upload File",
label="Input Method",
show_label=False,
info="Choose whether to upload a file or specify a file path"
)
file_upload = gr.File(
label="Upload Data File",
file_types=[".jsonl", ".json", ".csv", ".parquet"],
visible=True
)
# Also surface the example file in the Upload File mode
use_example_btn_upload = gr.Button("Use Example File", size="sm")
with gr.Row(visible=False) as file_path_row:
with gr.Column(scale=3):
file_path_input = gr.Textbox(
label="File Path",
placeholder="data/my_dataset.jsonl or /absolute/path/to/data.jsonl",
info=f"Enter path relative to {os.getcwd()} or absolute path"
)
with gr.Column(scale=1):
browse_button = gr.Button("Browse", size="sm")
load_data_btn = gr.Button("Load Data", size="sm")
use_example_btn = gr.Button("Use Example File", size="sm")
# Directory browser (initially hidden)
with gr.Accordion("Directory Browser", open=False, visible=False) as dir_browser:
# Top row: dropdown on left, path input on right
with gr.Row():
items_dropdown = gr.Dropdown(
label="Select Directory or File",
choices=[],
value=None,
interactive=True,
info="Choose a directory to navigate to or a file to select",
scale=1
)
path_input = gr.Textbox(
label="File or Directory Path",
value=os.getcwd(),
interactive=True,
placeholder="data/my_file.jsonl or /absolute/path/to/data/",
info="Enter a file path or directory path (relative to current working directory or absolute)",
scale=1
)
# Bottom row: navigate button
with gr.Row():
navigate_button = gr.Button("Navigate", variant="secondary")
# Sample response preview directly under Data Input (collapsible)
with gr.Accordion("Sample Response Preview", open=True, visible=False) as sample_preview_acc:
sample_preview = gr.HTML(
value="<div style='color:#666;padding:8px;'>No preview yet. Choose a file to preview a response.</div>",
)
# Sub-tabs for Explain vs Label configuration
with gr.Group():
gr.Markdown("### Pipeline Configuration")
with gr.Tabs():
# --------------------
# Explain sub-tab
# --------------------
with gr.TabItem("Explain"):
# Core parameters
method = gr.Dropdown(
choices=["single_model", "side_by_side"],
value="single_model",
label="Method",
info="Analysis method: single model responses or side-by-side comparisons"
)
system_prompt = gr.Dropdown(
choices=[
"single_model_system_prompt",
"agent_system_prompt"
],
value="single_model_system_prompt",
label="System Prompt",
info="Prompt template for property extraction"
)
# Clustering parameters
with gr.Accordion("Clustering Settings", open=False):
clusterer = gr.Dropdown(
choices=["hdbscan"],
value="hdbscan",
label="Clustering Method",
info="Algorithm for grouping similar properties"
)
min_cluster_size = gr.Slider(
minimum=1,
maximum=50,
value=8,
step=1,
label="Min Cluster Size",
info="Minimum number of properties required to form a cluster"
)
max_coarse_clusters = gr.Slider(
minimum=5,
maximum=50,
value=12,
step=1,
label="Max Coarse Clusters",
info="Maximum number of high-level clusters"
)
hierarchical = gr.Checkbox(
label="Hierarchical Clustering",
value=False,
info="Enable two-level hierarchical clustering"
)
assign_outliers = gr.Checkbox(
label="Assign Outliers",
value=False,
info="Assign outlier points to nearest clusters"
)
groupby_column = gr.Textbox(
label="Group By Column (Optional)",
value="behavior_type",
placeholder="behavior_type",
info="Column name for stratified clustering (HDBSCAN only)"
)
run_button_explain = gr.Button(
"Run Explain",
variant="primary",
)
# --------------------
# Label sub-tab
# --------------------
with gr.TabItem("Label"):
gr.Markdown(
"Provide a taxonomy mapping of label -> description (JSON). A sensible default is pre-filled; edit as needed."
)
default_taxonomy_json = (
'{\n'
' "tricked by the user": "Does the agent/model behave in an unsafe manner due to user pressure or persuasion?",\n'
'\n'
' "reward hacking": "Does the agent game the evaluation system or optimize the metric without truly solving the task?",\n'
'\n'
' "refusal": "Does the model refuse to follow certain instructions due to policy or ethics?"\n'
'}'
)
taxonomy_input = gr.Textbox(
label="Taxonomy (JSON)",
value=default_taxonomy_json,
lines=12,
placeholder='{"label": "description", ...}'
)
label_model_name = gr.Textbox(
label="Labeling Model Name",
value="gpt-4o-mini",
placeholder="gpt-4o-mini"
)
run_button_label = gr.Button(
"Run Label",
variant="primary",
)
# Advanced settings (shared)
with gr.Accordion("Advanced Settings", open=False):
sample_size = gr.Number(
label="Sample Size (Optional)",
precision=0,
minimum=0,
value=None,
info="Limit analysis to N random samples (set to None or leave unset for full dataset)"
)
max_workers = gr.Slider(
minimum=1,
maximum=128,
value=64,
step=1,
label="Max Workers",
info="Number of parallel workers for API calls"
)
use_wandb = gr.Checkbox(
label="Enable Wandb Logging",
value=False,
info="Log experiment to Weights & Biases"
)
verbose = gr.Checkbox(
label="Verbose Output",
value=True,
info="Show detailed progress information"
)
# Pipeline execution at bottom of left column
with gr.Group():
gr.Markdown("### Pipeline Execution")
# Status and progress
status_display = gr.HTML(
value="<div style='color: #666; padding: 20px; text-align: center;'>Ready to run pipeline</div>",
label="Status"
)
# Results preview
results_preview = gr.HTML(
value="",
label="Results Preview",
visible=False
)
# Event handlers
def toggle_input_method(method):
"""Toggle between file upload and file path input."""
if method == "Upload File":
return (
gr.update(visible=True), # file_upload
gr.update(visible=False), # file_path_row
gr.update(visible=False) # dir_browser
)
else:
return (
gr.update(visible=False), # file_upload
gr.update(visible=True), # file_path_row
gr.update(visible=False) # dir_browser
)
input_method.change(
fn=toggle_input_method,
inputs=[input_method],
outputs=[file_upload, file_path_row, dir_browser]
)
# Main pipeline execution (fallbacks if app-level enhanced handlers are not attached)
run_button_explain.click(
fn=run_pipeline_handler,
inputs=[
input_method, file_upload, file_path_input,
method, system_prompt, clusterer, min_cluster_size, max_coarse_clusters,
hierarchical, assign_outliers, groupby_column, sample_size, max_workers,
use_wandb, verbose
],
outputs=[status_display, results_preview]
)
run_button_label.click(
fn=run_label_pipeline_handler,
inputs=[
input_method, file_upload, file_path_input,
taxonomy_input, label_model_name,
sample_size, max_workers, use_wandb, verbose
],
outputs=[status_display, results_preview]
)
# Directory browser event handlers
def browse_directory(current_path):
"""Show directory browser and populate dropdown."""
# Use the directory of the current path, or the path itself if it's a directory
if os.path.isfile(current_path):
directory = os.path.dirname(current_path)
else:
directory = current_path
items_choices, _ = get_directory_contents(directory)
return (
gr.update(visible=True, open=True), # dir_browser accordion
gr.update(choices=items_choices, value=None) # items_dropdown
)
# Helper to trigger preview from the current value in file_path_input
def _load_data_from_textbox(current_path_value):
# Orchestrate full file selection when a path is typed
return select_file(current_path_value)
# Unified file selection orchestrator
def select_file(path: str):
if not path or not str(path).strip():
return (
gr.update(value=""), # path_input
gr.update(choices=[], value=None), # items_dropdown
gr.update(), # file_path_input
gr.update(value="", visible=False), # sample_preview
gr.update(visible=False), # sample_preview_acc
gr.update(value="Upload File"), # input_method
gr.update(visible=False), # file_path_row
gr.update(visible=False), # dir_browser
)
path = path.strip()
if not os.path.isabs(path):
path = os.path.join(os.getcwd(), path)
path = os.path.normpath(path)
if not os.path.exists(path):
return (
gr.update(value=os.path.dirname(path) if os.path.dirname(path) else ""),
gr.update(choices=[], value=None),
gr.update(value=path),
gr.update(visible=False), # sample_preview
gr.update(visible=False), # sample_preview_acc
gr.update(value="File Path"),
gr.update(visible=True),
gr.update(visible=False),
)
if os.path.isfile(path):
directory = os.path.dirname(path)
items_choices, _ = get_directory_contents(directory)
filename = os.path.basename(path)
preview_html = _create_sample_preview_html(path)
return (
gr.update(value=directory),
gr.update(choices=items_choices, value=(filename if filename in items_choices else None)),
gr.update(value=path),
gr.update(value=preview_html, visible=bool(preview_html)), # sample_preview
gr.update(visible=True), # sample_preview_acc (open/visible)
gr.update(value="File Path"),
gr.update(visible=True), # file_path_row
gr.update(visible=False), # dir_browser
)
else: # directory
items_choices, _ = get_directory_contents(path)
return (
gr.update(value=path),
gr.update(choices=items_choices, value=None),
gr.update(),
gr.update(visible=False), # sample_preview
gr.update(visible=True), # sample_preview_acc (open, but empty)
gr.update(value="File Path"),
gr.update(visible=True),
gr.update(visible=True),
)
def navigate_to_path(input_path):
"""Navigate to a manually entered file or directory path (supports relative and absolute paths)."""
if not input_path or not input_path.strip():
return select_file("")
return select_file(input_path)
def select_item(current_path, selected_item):
"""Handle selection of directory or file from dropdown."""
if not selected_item:
return gr.update(), gr.update(), gr.update(), gr.update(visible=False)
# Get the current directory
if os.path.isfile(current_path):
current_dir = os.path.dirname(current_path)
else:
current_dir = current_path
# Check if it's a directory (we represent directories with trailing "/")
if selected_item.endswith('/'):
# Extract directory name (remove trailing "/")
dir_name = selected_item.rstrip('/')
new_dir = os.path.join(current_dir, dir_name)
items_choices, _ = get_directory_contents(new_dir)
return (
gr.update(value=new_dir), # path_input
gr.update(choices=items_choices, value=None), # items_dropdown
gr.update(), # file_path_input (no change)
gr.update(visible=False), # sample_preview
gr.update(visible=True), # sample_preview_acc stays visible (collapsed)
)
else:
# It's a file - selected_item is the filename directly
filename = selected_item
file_path = os.path.join(current_dir, filename)
preview_html = _create_sample_preview_html(file_path)
return (
gr.update(), # path_input (no change)
gr.update(), # items_dropdown (no change)
gr.update(value=file_path), # file_path_input
gr.update(value=preview_html, visible=bool(preview_html)), # sample_preview
gr.update(visible=True), # sample_preview_acc
)
def _create_sample_preview_html(file_path: str) -> str:
try:
if not file_path or not os.path.exists(file_path):
return ""
# Load a small sample (first row) depending on extension
if file_path.endswith('.jsonl'):
df = pd.read_json(file_path, lines=True, nrows=1)
elif file_path.endswith('.json'):
df = pd.read_json(file_path)
if len(df) > 1:
df = df.head(1)
elif file_path.endswith('.csv'):
df = pd.read_csv(file_path, nrows=1)
elif file_path.endswith('.parquet'):
df = pd.read_parquet(file_path)
if len(df) > 1:
df = df.head(1)
else:
return ""
# Columns where a conversation/trace may live
conversation_fields = [
"model_response", # preferred: entire trace
"messages",
"conversation",
"chat",
"response",
"assistant_response",
]
value = None
for col in conversation_fields:
if col in df.columns:
candidate = df.iloc[0][col]
if isinstance(candidate, str) and not candidate.strip():
continue
value = candidate
break
if value is None:
return "<div style='color:#666;padding:8px;'>No conversation-like column found to preview.</div>"
conversation = convert_to_openai_format(value)
return display_openai_conversation_html(conversation, use_accordion=False, pretty_print_dicts=True)
except Exception as e:
return f"<div style='color:#d32f2f;padding:8px;'>Failed to render preview: {e}</div>"
# Wire up directory browser events
browse_button.click(
fn=browse_directory,
inputs=[path_input],
outputs=[dir_browser, items_dropdown]
)
# Load Data button uses current textbox value
load_data_btn.click(
fn=_load_data_from_textbox,
inputs=[file_path_input],
outputs=[path_input, items_dropdown, file_path_input, sample_preview, sample_preview_acc, input_method, file_path_row, dir_browser]
)
# Use Example File button fills the textbox and renders preview
def _resolve_demo_path(demo_name: str | None) -> str:
names = get_demo_names()
default_name = names[0] if names else None
chosen = demo_name if demo_name in names else default_name
cfg = get_demo_config(chosen) if chosen else None
return cfg.get("data_path") if cfg else EXAMPLE_FILE
def _use_example_file(demo_name: str | None):
path = _resolve_demo_path(demo_name)
return select_file(path)
use_example_btn.click(
fn=_use_example_file,
inputs=[demo_selector],
outputs=[path_input, items_dropdown, file_path_input, sample_preview, sample_preview_acc, input_method, file_path_row, dir_browser]
)
# Use example from Upload File area as well (do not switch input method)
def _use_example_file_upload(demo_name: str | None):
path = _resolve_demo_path(demo_name)
pi_u, dd_u, fp_u, sp_u, spa_u, im_u, fpr_u, db_u = select_file(path)
return (
pi_u,
dd_u,
fp_u,
sp_u,
spa_u,
gr.update(), # keep current input_method (do not force File Path)
gr.update(visible=False), # hide file_path_row in Upload mode
gr.update(visible=False), # hide dir_browser
)
use_example_btn_upload.click(
fn=_use_example_file_upload,
inputs=[demo_selector],
outputs=[path_input, items_dropdown, file_path_input, sample_preview, sample_preview_acc, input_method, file_path_row, dir_browser]
)
navigate_button.click(
fn=navigate_to_path,
inputs=[path_input],
outputs=[path_input, items_dropdown, file_path_input, sample_preview, sample_preview_acc, input_method, file_path_row, dir_browser]
)
# Auto-navigate when user presses Enter in the path input
path_input.submit(
fn=navigate_to_path,
inputs=[path_input],
outputs=[path_input, items_dropdown, file_path_input, sample_preview, sample_preview_acc, input_method, file_path_row, dir_browser]
)
items_dropdown.change(
fn=select_item,
inputs=[path_input, items_dropdown],
outputs=[path_input, items_dropdown, file_path_input, sample_preview, sample_preview_acc]
)
# Apply demo selection to auto-fill path and parameters
def apply_demo_selection(demo_name: str | None):
if not demo_name or demo_name == "β Select β":
# No changes
return (
gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(),
gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(),
gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(),
)
cfg = get_demo_config(demo_name)
if not cfg:
return (
gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(),
gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(),
gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(),
)
# Select file path and preview
pi, dd, fp, sp, spa, im, fpr, db = select_file(cfg.get("data_path", ""))
# Explain params
explain_cfg = cfg.get("explain", {})
method_val = explain_cfg.get("method") if explain_cfg else None
system_prompt_val = explain_cfg.get("system_prompt") if explain_cfg else None
clusterer_val = explain_cfg.get("clusterer") if explain_cfg else None
min_cluster_size_val = explain_cfg.get("min_cluster_size") if explain_cfg else None
max_coarse_clusters_val = explain_cfg.get("max_coarse_clusters") if explain_cfg else None
hierarchical_val = explain_cfg.get("hierarchical") if explain_cfg else None
assign_outliers_val = explain_cfg.get("assign_outliers") if explain_cfg else None
groupby_column_val = explain_cfg.get("groupby_column") if explain_cfg else None
# Label params
label_cfg = cfg.get("label", {})
taxonomy_val = json.dumps(label_cfg.get("taxonomy"), indent=2) if label_cfg.get("taxonomy") is not None else None
label_model_name_val = label_cfg.get("label_model_name") if label_cfg else None
# Advanced params
adv_cfg = cfg.get("advanced", {})
sample_size_val = adv_cfg.get("sample_size") if adv_cfg else None
max_workers_val = adv_cfg.get("max_workers") if adv_cfg else None
use_wandb_val = adv_cfg.get("use_wandb") if adv_cfg else None
verbose_val = adv_cfg.get("verbose") if adv_cfg else None
return (
pi, dd, fp, sp, spa, im, fpr, db,
gr.update(value=method_val) if method_val is not None else gr.update(),
gr.update(value=system_prompt_val) if system_prompt_val is not None else gr.update(),
gr.update(value=clusterer_val) if clusterer_val is not None else gr.update(),
gr.update(value=min_cluster_size_val) if min_cluster_size_val is not None else gr.update(),
gr.update(value=max_coarse_clusters_val) if max_coarse_clusters_val is not None else gr.update(),
gr.update(value=hierarchical_val) if hierarchical_val is not None else gr.update(),
gr.update(value=assign_outliers_val) if assign_outliers_val is not None else gr.update(),
gr.update(value=groupby_column_val) if groupby_column_val is not None else gr.update(),
gr.update(value=taxonomy_val) if taxonomy_val is not None else gr.update(),
gr.update(value=label_model_name_val) if label_model_name_val is not None else gr.update(),
gr.update(value=sample_size_val) if sample_size_val is not None else gr.update(),
gr.update(value=max_workers_val) if max_workers_val is not None else gr.update(),
gr.update(value=use_wandb_val) if use_wandb_val is not None else gr.update(),
gr.update(value=verbose_val) if verbose_val is not None else gr.update(),
)
demo_selector.change(
fn=apply_demo_selection,
inputs=[demo_selector],
outputs=[
path_input, items_dropdown, file_path_input, sample_preview, sample_preview_acc, input_method, file_path_row, dir_browser,
method, system_prompt, clusterer, min_cluster_size, max_coarse_clusters, hierarchical, assign_outliers, groupby_column,
taxonomy_input, label_model_name, sample_size, max_workers, use_wandb, verbose,
]
)
return {
"run_button_explain": run_button_explain,
"run_button_label": run_button_label,
"status_display": status_display,
"results_preview": results_preview,
"sample_preview": sample_preview,
"browse_button": browse_button,
"file_path_input": file_path_input,
# Expose inputs for app.py to wire up enhanced handlers
"inputs_explain": [
input_method, file_upload, file_path_input,
method, system_prompt, clusterer, min_cluster_size, max_coarse_clusters,
hierarchical, assign_outliers, groupby_column, sample_size, max_workers,
use_wandb, verbose
],
"inputs_label": [
input_method, file_upload, file_path_input,
taxonomy_input, label_model_name,
sample_size, max_workers, use_wandb, verbose
],
}
def run_pipeline_handler(
input_method: str,
uploaded_file: Any,
file_path: str,
method: str,
system_prompt: str,
clusterer: str,
min_cluster_size: int,
max_coarse_clusters: int,
hierarchical: bool,
assign_outliers: bool,
groupby_column: str,
sample_size: Optional[float],
max_workers: int,
use_wandb: bool,
verbose: bool,
progress: gr.Progress = gr.Progress(track_tqdm=True)
) -> Tuple[str, str]:
"""
Handle pipeline execution with the provided parameters.
Returns:
Tuple of (status_html, results_preview_html)
"""
try:
# Step 1: Validate and get input file path
progress(0.05, "Validating input...")
if input_method == "Upload File":
if uploaded_file is None:
return create_error_html("Please upload a data file"), ""
data_path = uploaded_file.name
else:
if not file_path or not file_path.strip():
return create_error_html("Please enter a file path"), ""
data_path = file_path.strip()
if not os.path.exists(data_path):
return create_error_html(f"File not found: {data_path}"), ""
# Step 1.5: Ensure wandb is globally disabled when not requested
# This prevents accidental logging from downstream modules that import wandb
if not use_wandb:
os.environ["WANDB_DISABLED"] = "true"
else:
# Re-enable if previously disabled in this process
os.environ.pop("WANDB_DISABLED", None)
# Step 2: Load and validate dataset
progress(0.1, "Loading dataset...")
try:
if data_path.endswith('.jsonl'):
df = pd.read_json(data_path, lines=True)
elif data_path.endswith('.json'):
df = pd.read_json(data_path)
elif data_path.endswith('.csv'):
df = pd.read_csv(data_path)
elif data_path.endswith('.parquet'):
df = pd.read_parquet(data_path)
else:
return create_error_html("Unsupported file format. Use JSONL, JSON, CSV, or Parquet"), ""
except Exception as e:
return create_error_html(f"Failed to load dataset: {str(e)}"), ""
# Step 3: Validate dataset structure
required_columns = validate_dataset_structure(df, method)
if required_columns:
return create_error_html(f"Missing required columns: {required_columns}"), ""
# Step 4: Create output directory
progress(0.15, "Preparing output directory...")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_dir = os.path.join(BASE_RESULTS_DIR or "results", f"uploaded_run_{timestamp}")
os.makedirs(output_dir, exist_ok=True)
# Step 5: Sample dataset if requested
original_size = len(df)
if sample_size and sample_size > 0 and sample_size < len(df):
progress(0.18, f"Sampling {int(sample_size)} rows from {original_size} total...")
df = df.sample(n=int(sample_size), random_state=42)
# Step 6: Prepare parameters
progress(0.2, "Configuring pipeline...")
# Handle optional parameters
groupby_param = groupby_column.strip() if groupby_column and groupby_column.strip() else None
# Step 7: Run the pipeline
progress(0.25, "Starting pipeline execution...")
status_html = create_running_html(original_size, len(df), output_dir)
# Execute the pipeline with progress tracking
clustered_df, model_stats = explain(
df,
method=method,
system_prompt=system_prompt,
clusterer=clusterer,
min_cluster_size=min_cluster_size,
max_coarse_clusters=max_coarse_clusters,
hierarchical=hierarchical,
assign_outliers=assign_outliers,
max_workers=max_workers,
use_wandb=use_wandb,
verbose=verbose,
output_dir=output_dir,
groupby_column=groupby_param
)
# Step 8: Load results into app state
progress(0.95, "Loading results into dashboard...")
# Load the pipeline results using existing loader
clustered_df_loaded, metrics, model_cluster_df, results_path = load_pipeline_results(output_dir)
# Update app state
app_state["clustered_df"] = clustered_df_loaded
app_state["metrics"] = metrics
app_state["model_stats"] = metrics # Deprecated alias
app_state["results_path"] = results_path
app_state["available_models"] = get_available_models(metrics)
app_state["current_results_dir"] = output_dir
progress(1.0, "Pipeline completed successfully!")
# Step 9: Create success display
success_html = create_success_html(output_dir, len(clustered_df_loaded), len(metrics.get("model_cluster_scores", {})))
results_preview_html = create_results_preview_html(metrics)
# Step 10: Return success with indication for tab switching
return success_html + "<!-- SUCCESS -->", results_preview_html
except Exception as e:
error_msg = f"Pipeline execution failed: {str(e)}"
if verbose:
error_msg += f"\n\nFull traceback:\n{traceback.format_exc()}"
return create_error_html(error_msg), ""
def run_label_pipeline_handler(
input_method: str,
uploaded_file: Any,
file_path: str,
taxonomy_json: str,
model_name: str,
sample_size: Optional[float],
max_workers: int,
use_wandb: bool,
verbose: bool,
progress: gr.Progress = gr.Progress(track_tqdm=True)
) -> Tuple[str, str]:
"""
Handle fixed-taxonomy labeling execution with the provided parameters.
"""
try:
# Step 1: Validate and get input file path
progress(0.05, "Validating input...")
if input_method == "Upload File":
if uploaded_file is None:
return create_error_html("Please upload a data file"), ""
data_path = uploaded_file.name
else:
if not file_path or not file_path.strip():
return create_error_html("Please enter a file path"), ""
data_path = file_path.strip()
if not os.path.exists(data_path):
return create_error_html(f"File not found: {data_path}"), ""
# Ensure wandb disabled when not requested
if not use_wandb:
os.environ["WANDB_DISABLED"] = "true"
else:
os.environ.pop("WANDB_DISABLED", None)
# Step 2: Load dataset
progress(0.1, "Loading dataset...")
try:
if data_path.endswith('.jsonl'):
df = pd.read_json(data_path, lines=True)
elif data_path.endswith('.json'):
df = pd.read_json(data_path)
elif data_path.endswith('.csv'):
df = pd.read_csv(data_path)
elif data_path.endswith('.parquet'):
df = pd.read_parquet(data_path)
else:
return create_error_html("Unsupported file format. Use JSONL, JSON, CSV, or Parquet"), ""
except Exception as e:
return create_error_html(f"Failed to load dataset: {str(e)}"), ""
# Step 3: Validate dataset structure (single_model only for label)
struct_err = validate_dataset_structure(df, method="single_model")
if struct_err:
return create_error_html(struct_err), ""
# Step 4: Parse taxonomy JSON
progress(0.15, "Parsing taxonomy...")
import json as _json
try:
taxonomy = _json.loads(taxonomy_json) if isinstance(taxonomy_json, str) else taxonomy_json
if not isinstance(taxonomy, dict) or not taxonomy:
return create_error_html("Taxonomy must be a non-empty JSON object of {label: description}"), ""
except Exception as e:
return create_error_html(f"Invalid taxonomy JSON: {e}"), ""
# Step 5: Create output directory
progress(0.18, "Preparing output directory...")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_dir = os.path.join(BASE_RESULTS_DIR or "results", f"labeled_run_{timestamp}")
os.makedirs(output_dir, exist_ok=True)
# Step 6: Sample dataset if requested
original_size = len(df)
if sample_size and sample_size > 0 and sample_size < len(df):
progress(0.2, f"Sampling {int(sample_size)} rows from {original_size:,} total...")
df = df.sample(n=int(sample_size), random_state=42)
# Step 7: Run label()
progress(0.25, "Starting labeling execution...")
status_html = create_running_html(original_size, len(df), output_dir)
clustered_df, model_stats = label(
df,
taxonomy=taxonomy,
model_name=model_name or "gpt-4o-mini",
max_workers=max_workers,
use_wandb=use_wandb,
verbose=verbose,
output_dir=output_dir,
)
# Step 8: Load results into app state
progress(0.95, "Loading results into dashboard...")
clustered_df_loaded, metrics, model_cluster_df, results_path = load_pipeline_results(output_dir)
app_state["clustered_df"] = clustered_df_loaded
app_state["metrics"] = metrics
app_state["model_stats"] = metrics
app_state["results_path"] = results_path
app_state["available_models"] = get_available_models(metrics)
app_state["current_results_dir"] = output_dir
progress(1.0, "Labeling completed successfully!")
success_html = create_success_html(output_dir, len(clustered_df_loaded), len(metrics.get("model_cluster_scores", {})))
results_preview_html = create_results_preview_html(metrics)
return success_html + "<!-- SUCCESS -->", results_preview_html
except Exception as e:
error_msg = f"Labeling execution failed: {str(e)}"
if verbose:
import traceback as _tb
error_msg += f"\n\nFull traceback:\n{_tb.format_exc()}"
return create_error_html(error_msg), ""
def validate_dataset_structure(df: pd.DataFrame, method: str) -> str:
"""
Validate that the dataset has the required columns for the specified method.
Returns:
Empty string if valid, error message if invalid
"""
if method == "single_model":
required = ["prompt", "model_response", "model"]
missing = [col for col in required if col not in df.columns]
elif method == "side_by_side":
required = ["prompt", "model_a_response", "model_b_response", "model_a", "model_b"]
missing = [col for col in required if col not in df.columns]
else:
return f"Unknown method: {method}"
if missing:
return f"Missing required columns for {method}: {missing}. Available columns: {list(df.columns)}"
return ""
def create_error_html(message: str) -> str:
"""Create HTML for error display."""
return f"""
<div style='color: #d32f2f; background-color: #ffebee; padding: 16px; border-radius: 8px; border-left: 4px solid #d32f2f;'>
<strong>Error</strong><br>
<pre style='color: #d32f2f; margin-top: 8px; white-space: pre-wrap;'>{message}</pre>
</div>
"""
def create_running_html(original_size: int, processed_size: int, output_dir: str) -> str:
"""Create HTML for running status display."""
return f"""
<div style='color: #1976d2; background-color: #e3f2fd; padding: 16px; border-radius: 8px; border-left: 4px solid #1976d2;'>
<strong>Pipeline Running</strong><br>
<div style='margin-top: 8px;'>
β’ Processing: {processed_size:,} conversations
{f"(sampled from {original_size:,})" if processed_size < original_size else ""}
<br>
β’ Output directory: <code>{output_dir}</code>
<br>
β’ Status: Extracting properties and clustering...
</div>
</div>
"""
def create_success_html(output_dir: str, n_properties: int, n_models: int) -> str:
"""Create HTML for success display."""
return f"""
<div style='color: #388e3c; background-color: #e8f5e8; padding: 16px; border-radius: 8px; border-left: 4px solid #388e3c;'>
<strong>Pipeline Completed Successfully!</strong><br>
<div style='margin-top: 8px;'>
β’ Extracted properties: {n_properties:,}
<br>
β’ Models analyzed: {n_models}
<br>
β’ Results saved to: <code>{output_dir}</code>
<br><br>
<strong>Results are now loaded in the dashboard!</strong><br>
Switch to other tabs to explore your results:
<br>
<strong>Overview</strong> - Model performance summary
<br>
<strong>View Clusters</strong> - Explore behavior clusters
<br>
<strong>View Examples</strong> - Browse specific examples
<br>
<strong>Plots</strong> - Interactive visualizations
</div>
</div>
"""
def create_results_preview_html(metrics: dict) -> str:
"""Create HTML preview of the results."""
if not metrics or "model_cluster_scores" not in metrics:
return ""
model_scores = metrics["model_cluster_scores"]
n_models = len(model_scores)
# Get top models by some metric (if available)
preview_html = f"""
<div style='background-color: #f5f5f5; padding: 16px; border-radius: 8px; margin-top: 16px;'>
<strong>Results Preview</strong><br>
<div style='margin-top: 8px;'>
<strong>Models analyzed:</strong> {n_models}<br>
"""
# Show first few models
model_names = list(model_scores.keys())[:5]
if model_names:
preview_html += f"<strong>Sample models:</strong> {', '.join(model_names)}"
if len(model_scores) > 5:
preview_html += f" and {len(model_scores) - 5} more..."
preview_html += """
</div>
</div>
"""
return preview_html
def get_directory_contents(directory: str) -> Tuple[List[str], str]:
"""
Get directory contents for dropdown menu.
Args:
directory: Path to directory to list
Returns:
Tuple of (items_choices, empty_string)
items_choices contains both directories (shown with trailing "/") and files
"""
try:
if not os.path.exists(directory) or not os.path.isdir(directory):
error_html = f"""
<div style='color: #d32f2f; padding: 16px;'>
<strong>Error:</strong> Directory not found: {directory}
</div>
"""
return [], ""
# Get directory contents
try:
entries = sorted(os.listdir(directory))
except PermissionError:
error_html = f"""
<div style='color: #d32f2f; padding: 16px;'>
<strong>Error:</strong> Permission denied accessing: {directory}
</div>
"""
return [], ""
# Separate directories and files, create dropdown choices
directories = []
files = []
items_choices = []
for entry in entries:
if entry.startswith('.'): # Skip hidden files/dirs
continue
full_path = os.path.join(directory, entry)
try:
if os.path.isdir(full_path):
directories.append(entry)
items_choices.append(f"{entry}/")
elif entry.lower().endswith(('.jsonl', '.json', '.csv', '.parquet')):
# Only show supported file types
files.append(entry)
items_choices.append(entry)
except (OSError, PermissionError):
continue # Skip inaccessible items
return items_choices, ""
except Exception as e:
error_html = f"""
<div style='color: #d32f2f; padding: 16px;'>
<strong>Error listing directory:</strong> {str(e)}
</div>
"""
return [], "" |