Spaces:
Running
Running
File size: 7,218 Bytes
1af0726 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
"""Logic for the **View Examples** tab β dropdown population + example renderer."""
from __future__ import annotations
from typing import Any, List, Tuple, Optional
import gradio as gr
import ast
from .state import app_state
from .utils import (
get_unique_values_for_dropdowns,
get_example_data,
format_examples_display,
search_clusters_by_text,
)
__all__: List[str] = [
"get_dropdown_choices",
"update_example_dropdowns",
"view_examples",
"get_filter_options",
"update_filter_dropdowns",
]
# ---------------------------------------------------------------------------
# Dropdown helpers
# ---------------------------------------------------------------------------
def get_dropdown_choices(selected_models: Optional[List[str]] = None) -> Tuple[List[str], List[str], List[str]]:
if app_state["clustered_df"] is None:
return [], [], []
choices = get_unique_values_for_dropdowns(app_state["clustered_df"])
prompts = ["All Prompts"] + choices["prompts"]
# If a sidebar selection is provided, filter models to that subset (ignoring the pseudo 'all')
if selected_models:
subset = [m for m in choices["models"] if m in [sm for sm in selected_models if sm != "all"]]
models = ["All Models"] + (subset if subset else choices["models"]) # fallback to all available if subset empty
else:
models = ["All Models"] + choices["models"]
properties = ["All Clusters"] + choices["properties"]
return prompts, models, properties
def update_example_dropdowns(selected_models: Optional[List[str]] = None) -> Tuple[Any, Any, Any]:
prompts, models, properties = get_dropdown_choices(selected_models)
# If exactly one concrete model selected in sidebar, preselect it; else default to All Models
preselect_model = "All Models"
if selected_models:
concrete = [m for m in selected_models if m != "all"]
if len(concrete) == 1 and concrete[0] in models:
preselect_model = concrete[0]
return (
gr.update(choices=prompts, value="All Prompts" if prompts else None),
gr.update(choices=models, value=(preselect_model if models else None)),
gr.update(choices=properties, value="All Clusters" if properties else None),
)
# ---------------------------------------------------------------------------
# Example viewer
# ---------------------------------------------------------------------------
def view_examples(
selected_prompt: str,
selected_model: str,
selected_property: str,
max_examples: int = 5,
use_accordion: bool = True,
pretty_print_dicts: bool = True,
search_term: str = "",
show_unexpected_behavior: bool = False,
selected_models_sidebar: Optional[List[str]] = None,
selected_tags_sidebar: Optional[List[str]] = None,
) -> str:
if app_state["clustered_df"] is None:
return (
"<p style='color: #e74c3c; padding: 20px;'>β Please load data first "
"using the 'Load Data' tab</p>"
)
# Apply search filter first if search term is provided
df = app_state["clustered_df"]
# Apply sidebar-selected model filter if provided (ignoring pseudo 'all') before dropdown filters
if selected_models_sidebar:
concrete = [m for m in selected_models_sidebar if m != "all"]
if concrete:
df = df[df["model"].isin(concrete)]
if df.empty:
return "<p style='color: #e74c3c; padding: 20px;'>β No examples for the selected model subset.</p>"
if search_term and isinstance(search_term, str) and search_term.strip():
df = search_clusters_by_text(df, search_term.strip(), 'all')
if df.empty:
return f"<p style='color: #e74c3c; padding: 20px;'>β No clusters found matching '{search_term}'</p>"
# Optional tags filter (sidebar): include rows whose first meta value is in selected tags
if selected_tags_sidebar and len(selected_tags_sidebar) > 0 and 'meta' in df.columns:
def _parse_meta(obj: Any) -> Any:
if isinstance(obj, str):
try:
return ast.literal_eval(obj)
except Exception:
return obj
return obj
def _first_val(obj: Any) -> Any:
if obj is None:
return None
obj = _parse_meta(obj)
if isinstance(obj, dict):
for _, v in obj.items():
return v
return None
if isinstance(obj, (list, tuple)):
return obj[0] if len(obj) > 0 else None
return obj
parsed_meta = df['meta'].apply(_parse_meta)
non_null_parsed = [m for m in parsed_meta.tolist() if m is not None]
all_empty_dicts = (
len(non_null_parsed) > 0 and all(isinstance(m, dict) and len(m) == 0 for m in non_null_parsed)
)
if not all_empty_dicts:
allowed = set(map(str, selected_tags_sidebar))
df = df[df['meta'].apply(_first_val).astype(str).isin(allowed)]
if df.empty:
return "<p style='color: #e74c3c; padding: 20px;'>β No examples found for selected tags</p>"
examples = get_example_data(
df,
selected_prompt if selected_prompt != "All Prompts" else None,
selected_model if selected_model != "All Models" else None,
selected_property if selected_property != "All Clusters" else None,
max_examples,
show_unexpected_behavior=show_unexpected_behavior,
randomize=(
(selected_prompt == "All Prompts") and
(selected_model == "All Models") and
(selected_property == "All Clusters") and
(not search_term or not str(search_term).strip())
),
)
return format_examples_display(
examples,
selected_prompt,
selected_model,
selected_property,
use_accordion=use_accordion,
pretty_print_dicts=pretty_print_dicts,
)
# ---------------------------------------------------------------------------
# Filter dropdown helpers for frequency comparison
# ---------------------------------------------------------------------------
def get_filter_options() -> Tuple[List[str], List[str]]:
if not app_state["model_stats"]:
return ["All Models"], ["All Metrics"]
available_models = ["All Models"] + list(app_state["model_stats"].keys())
quality_metrics = set()
for model_data in app_state["model_stats"].values():
clusters = model_data.get("fine", []) + model_data.get("coarse", [])
for cluster in clusters:
quality_score = cluster.get("quality_score", {})
if isinstance(quality_score, dict):
quality_metrics.update(quality_score.keys())
available_metrics = ["All Metrics"] + sorted(list(quality_metrics))
return available_models, available_metrics
def update_filter_dropdowns() -> Tuple[Any, Any]:
models, metrics = get_filter_options()
return (
gr.update(choices=models, value="All Models" if models else None),
gr.update(choices=metrics, value="All Metrics" if metrics else None),
) |