Spaces:
Running
on
Zero
Running
on
Zero
add scribble controlnet
Browse files
app.py
CHANGED
|
@@ -16,10 +16,41 @@ from trellis.representations import Gaussian, MeshExtractResult
|
|
| 16 |
from trellis.utils import render_utils, postprocessing_utils
|
| 17 |
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
MAX_SEED = np.iinfo(np.int32).max
|
| 20 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 21 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
def start_session(req: gr.Request):
|
| 25 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
@@ -31,7 +62,11 @@ def end_session(req: gr.Request):
|
|
| 31 |
shutil.rmtree(user_dir)
|
| 32 |
|
| 33 |
|
| 34 |
-
def preprocess_image(image: Image.Image
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
"""
|
| 36 |
Preprocess the input image.
|
| 37 |
|
|
@@ -41,6 +76,21 @@ def preprocess_image(image: Image.Image) -> Image.Image:
|
|
| 41 |
Returns:
|
| 42 |
Image.Image: The preprocessed image.
|
| 43 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
processed_image = pipeline.preprocess_image(image)
|
| 45 |
return processed_image
|
| 46 |
|
|
@@ -268,7 +318,9 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 268 |
with gr.Column():
|
| 269 |
with gr.Tabs() as input_tabs:
|
| 270 |
with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
|
| 271 |
-
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
|
|
|
|
|
|
|
| 272 |
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
|
| 273 |
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
|
| 274 |
gr.Markdown("""
|
|
@@ -352,7 +404,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 352 |
|
| 353 |
image_prompt.upload(
|
| 354 |
preprocess_image,
|
| 355 |
-
inputs=[image_prompt],
|
| 356 |
outputs=[image_prompt],
|
| 357 |
)
|
| 358 |
multiimage_prompt.upload(
|
|
@@ -365,6 +417,10 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 365 |
get_seed,
|
| 366 |
inputs=[randomize_seed, seed],
|
| 367 |
outputs=[seed],
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
).then(
|
| 369 |
image_to_3d,
|
| 370 |
inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
|
|
|
|
| 16 |
from trellis.utils import render_utils, postprocessing_utils
|
| 17 |
|
| 18 |
|
| 19 |
+
|
| 20 |
+
import os
|
| 21 |
+
import random
|
| 22 |
+
import torch
|
| 23 |
+
import torchvision.transforms.functional as TF
|
| 24 |
+
|
| 25 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
| 26 |
+
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
|
| 27 |
+
from controlnet_aux import PidiNetDetector, HEDdetector
|
| 28 |
+
from diffusers.utils import load_image
|
| 29 |
+
from huggingface_hub import HfApi
|
| 30 |
+
from pathlib import Path
|
| 31 |
+
from PIL import Image, ImageOps
|
| 32 |
+
import torch
|
| 33 |
+
import numpy as np
|
| 34 |
+
import cv2
|
| 35 |
+
import os
|
| 36 |
+
import random
|
| 37 |
+
|
| 38 |
MAX_SEED = np.iinfo(np.int32).max
|
| 39 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 40 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 41 |
|
| 42 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 43 |
+
|
| 44 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
| 45 |
+
"sd-community/sdxl-flash",
|
| 46 |
+
controlnet=controlnet,
|
| 47 |
+
vae=vae,
|
| 48 |
+
torch_dtype=torch.float16,
|
| 49 |
+
# scheduler=eulera_scheduler,
|
| 50 |
+
)
|
| 51 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 52 |
+
|
| 53 |
+
pipe.to(device)
|
| 54 |
|
| 55 |
def start_session(req: gr.Request):
|
| 56 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
|
|
| 62 |
shutil.rmtree(user_dir)
|
| 63 |
|
| 64 |
|
| 65 |
+
def preprocess_image(image: Image.Image,
|
| 66 |
+
prompt: str,
|
| 67 |
+
num_steps: int = 25,
|
| 68 |
+
guidance_scale: float = 5,
|
| 69 |
+
controlnet_conditioning_scale: float = 1.0,) -> Image.Image:
|
| 70 |
"""
|
| 71 |
Preprocess the input image.
|
| 72 |
|
|
|
|
| 76 |
Returns:
|
| 77 |
Image.Image: The preprocessed image.
|
| 78 |
"""
|
| 79 |
+
width, height = image['composite'].size
|
| 80 |
+
ratio = np.sqrt(1024. * 1024. / (width * height))
|
| 81 |
+
new_width, new_height = int(width * ratio), int(height * ratio)
|
| 82 |
+
image = image['composite'].resize((new_width, new_height))
|
| 83 |
+
|
| 84 |
+
image = pipe(
|
| 85 |
+
prompt=prompt,
|
| 86 |
+
negative_prompt=negative_prompt,
|
| 87 |
+
image=image,
|
| 88 |
+
num_inference_steps=num_steps,
|
| 89 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 90 |
+
guidance_scale=guidance_scale,
|
| 91 |
+
width=new_width,
|
| 92 |
+
height=new_height,).images[0]
|
| 93 |
+
|
| 94 |
processed_image = pipeline.preprocess_image(image)
|
| 95 |
return processed_image
|
| 96 |
|
|
|
|
| 318 |
with gr.Column():
|
| 319 |
with gr.Tabs() as input_tabs:
|
| 320 |
with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
|
| 321 |
+
#image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
|
| 322 |
+
image_prompt = image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
|
| 323 |
+
prompt = gr.Textbox(label="Prompt")
|
| 324 |
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
|
| 325 |
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
|
| 326 |
gr.Markdown("""
|
|
|
|
| 404 |
|
| 405 |
image_prompt.upload(
|
| 406 |
preprocess_image,
|
| 407 |
+
inputs=[image_prompt, prompt],
|
| 408 |
outputs=[image_prompt],
|
| 409 |
)
|
| 410 |
multiimage_prompt.upload(
|
|
|
|
| 417 |
get_seed,
|
| 418 |
inputs=[randomize_seed, seed],
|
| 419 |
outputs=[seed],
|
| 420 |
+
).then(
|
| 421 |
+
preprocess_image,
|
| 422 |
+
inputs=[image_prompt, prompt],
|
| 423 |
+
outputs=[image_prompt],
|
| 424 |
).then(
|
| 425 |
image_to_3d,
|
| 426 |
inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
|