Spaces:
Runtime error
Runtime error
| import utils | |
| import os | |
| import openai | |
| from llama_index import SimpleDirectoryReader | |
| from llama_index import Document | |
| from llama_index import VectorStoreIndex | |
| from llama_index import ServiceContext | |
| from llama_index.llms import OpenAI | |
| from llama_index.embeddings import HuggingFaceEmbedding | |
| from trulens_eval import Tru | |
| from llama_index.memory import ChatMemoryBuffer | |
| from utils import get_prebuilt_trulens_recorder | |
| import time | |
| openai.api_key = utils.get_openai_api_key() | |
| documents = SimpleDirectoryReader( | |
| input_files=["./raw_documents/HI_Knowledge_Base.pdf"] | |
| ).load_data() | |
| document = Document(text="\n\n".join([doc.text for doc in documents])) | |
| ### gpt-4-1106-preview | |
| ### gpt-3.5-turbo-1106 / gpt-3.5-turbo | |
| print("Initializing GPT 3.5 ..") | |
| llm = OpenAI(model="gpt-3.5-turbo-1106", temperature=0.1) | |
| print("Initializing bge-small-en-v1.5 embedding model ..") | |
| embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5") | |
| print("Creating vector store ..") | |
| service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model) | |
| index = VectorStoreIndex.from_documents([document], service_context=service_context) | |
| if False: | |
| query_engine = index.as_query_engine(streaming=True) | |
| else: | |
| memory = ChatMemoryBuffer.from_defaults(token_limit=15000) | |
| # chat_engine = index.as_query_engine(streaming=True) | |
| chat_engine = index.as_chat_engine( | |
| chat_mode="context", | |
| memory=memory | |
| ) | |
| while True: | |
| input_str = input("[User]: ") | |
| if input_str == "END": | |
| break | |
| # res = chat_engine.query(input_str) | |
| res = chat_engine.stream_chat(input_str) | |
| bot_response = "" | |
| print("[Bot]: ", end="") | |
| for s in res.response_gen: | |
| bot_response += s | |
| print(s, end="") | |
| print("") |