File size: 9,033 Bytes
db694c4
b034166
 
db694c4
b2b3b83
dec332b
 
 
db694c4
47e9340
 
 
 
 
 
 
db694c4
dec332b
23e06a5
dec332b
b2b3b83
db694c4
 
a561bc6
db694c4
47e9340
dec332b
 
47e9340
 
 
 
 
 
b2b3b83
 
 
 
 
 
 
db694c4
 
d026604
 
a561bc6
 
 
d026604
 
db694c4
d026604
 
 
db694c4
d026604
a561bc6
 
d026604
db694c4
d026604
 
 
 
3557a96
 
b2b3b83
 
 
 
 
 
 
 
 
 
 
 
 
 
d026604
db694c4
47e9340
dec332b
b034166
47e9340
db694c4
 
d026604
dec332b
 
db694c4
b034166
 
 
dec332b
 
db694c4
 
d026604
dec332b
 
47e9340
 
 
 
 
 
b034166
d026604
b034166
 
 
db694c4
47e9340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db694c4
 
47e9340
 
 
 
 
 
 
 
 
 
 
 
 
b034166
 
 
 
dec332b
 
 
47e9340
dec332b
47e9340
dec332b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db694c4
 
 
 
dec332b
 
 
db694c4
 
 
dec332b
 
 
 
 
db694c4
 
 
 
47e9340
db694c4
d026604
47e9340
 
 
db694c4
b034166
dec332b
 
 
b034166
 
dec332b
b034166
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import streamlit as st
from streamlit_feedback import streamlit_feedback

import os
import pandas as pd
import base64
from io import BytesIO
import nest_asyncio

from llama_index.llms import OpenAI
from llama_index import SimpleDirectoryReader
from llama_index import Document
from llama_index import VectorStoreIndex
from llama_index import ServiceContext
from llama_index.embeddings import HuggingFaceEmbedding
from llama_index.memory import ChatMemoryBuffer

from vision_api import get_transcribed_text

nest_asyncio.apply()

# App title
st.set_page_config(page_title="πŸ’¬ Open AI Chatbot")
openai_api = os.getenv("OPENAI_API_KEY")

# "./raw_documents/HI_Knowledge_Base.pdf"
input_files = ["./raw_documents/HI Chapter Summary Version 1.3.pdf",
               "./raw_documents/qna.txt"]
embedding_model = "BAAI/bge-small-en-v1.5"
system_content = ("You are a helpful study assistant. "
                  "You do not respond as 'User' or pretend to be 'User'. "
                  "You only respond once as 'Assistant'."
)

data_df = pd.DataFrame(
    {
        "Completion": [30, 40, 100, 10],
    }
)
data_df.index = ["Chapter 1", "Chapter 2", "Chapter 3", "Chapter 4"]

# Replicate Credentials
with st.sidebar:
    st.title("πŸ’¬ Open AI Chatbot")
    st.write("This chatbot is created using the GPT model from Open AI.")
    if openai_api:
        pass
    elif "OPENAI_API_KEY" in st.secrets:
        st.success("API key already provided!", icon="βœ…")
        openai_api = st.secrets["OPENAI_API_KEY"]
    else:
        openai_api = st.text_input("Enter OpenAI API token:", type="password")
        if not (openai_api.startswith("sk-") and len(openai_api)==51):
            st.warning("Please enter your credentials!", icon="⚠️")
        else:
            st.success("Proceed to entering your prompt message!", icon="πŸ‘‰")

    ### for streamlit purpose
    os.environ["OPENAI_API_KEY"] = openai_api

    st.subheader("Models and parameters")
    selected_model = st.sidebar.selectbox("Choose an OpenAI model", 
                                          ["gpt-3.5-turbo-1106", "gpt-4-1106-preview"], 
                                           key="selected_model")
    temperature = st.sidebar.slider("temperature", min_value=0.0, max_value=2.0, 
                                    value=0.0, step=0.01)
    st.data_editor(
        data_df,
        column_config={
            "Completion": st.column_config.ProgressColumn(
                            "Completion %",
                            help="Percentage of content covered",
                            format="%.1f%%",
                            min_value=0,
                            max_value=100,
            ),
        },
        hide_index=False,
    )

    st.markdown("πŸ“– Reach out to SakiMilo to learn how to create this app!")

if "init" not in st.session_state.keys():
    st.session_state.init = {"warm_started": "No"}
    st.session_state.feedback = False

# Store LLM generated responses
if "messages" not in st.session_state.keys():
    st.session_state.messages = [{"role": "assistant", 
                                  "content": "How may I assist you today?",
                                  "type": "text"}]

if "feedback_key" not in st.session_state:
    st.session_state.feedback_key = 0

if "release_file" not in st.session_state:
    st.session_state.release_file = "false"

def clear_chat_history():
    st.session_state.messages = [{"role": "assistant", 
                                  "content": "How may I assist you today?",
                                  "type": "text"}]
    chat_engine = get_query_engine(input_files=input_files, 
                                   llm_model=selected_model, 
                                   temperature=temperature,
                                   embedding_model=embedding_model,
                                   system_content=system_content)
    chat_engine.reset()

st.sidebar.button("Clear Chat History", on_click=clear_chat_history)
if st.sidebar.button("I want to submit a feedback!"):
    st.session_state.feedback = True
    st.session_state.feedback_key += 1  # overwrite feedback component

@st.cache_resource
def get_document_object(input_files):
    documents = SimpleDirectoryReader(input_files=input_files).load_data()
    document = Document(text="\n\n".join([doc.text for doc in documents]))
    return document

@st.cache_resource
def get_llm_object(selected_model, temperature):
    llm = OpenAI(model=selected_model, temperature=temperature)
    return llm

@st.cache_resource
def get_embedding_model(model_name):
    embed_model = HuggingFaceEmbedding(model_name=model_name)
    return embed_model

@st.cache_resource
def get_query_engine(input_files, llm_model, temperature, 
                     embedding_model, system_content):

    document = get_document_object(input_files)
    llm = get_llm_object(llm_model, temperature)
    embedded_model = get_embedding_model(embedding_model)

    service_context = ServiceContext.from_defaults(llm=llm, embed_model=embedded_model)
    index = VectorStoreIndex.from_documents([document], service_context=service_context)
    memory = ChatMemoryBuffer.from_defaults(token_limit=15000)

    # chat_engine = index.as_query_engine(streaming=True)
    chat_engine = index.as_chat_engine(
        chat_mode="context",
        memory=memory,
        system_prompt=system_content
    )

    return chat_engine

def generate_llm_response(prompt_input):
    chat_engine = get_query_engine(input_files=input_files, 
                                   llm_model=selected_model, 
                                   temperature=temperature,
                                   embedding_model=embedding_model,
                                   system_content=system_content)
    
    # st.session_state.messages
    response = chat_engine.stream_chat(prompt_input)
    return response

def handle_feedback(user_response):
    st.toast("βœ”οΈ Feedback received!")
    st.session_state.feedback = False

def handle_image_upload():
    st.session_state.release_file = "true"

# Warm start
if st.session_state.init["warm_started"] == "No":
    clear_chat_history()
    st.session_state.init["warm_started"] = "Yes"

# Image upload option
with st.sidebar:
    image_file = st.file_uploader("Upload your image here...", 
                                  type=["png", "jpeg", "jpg"],
                                  on_change=handle_image_upload)

    if st.session_state.release_file == "true" and image_file:
        with st.spinner("Uploading..."):
            b64string = base64.b64encode(image_file.read()).decode('utf-8')
            message = {
                    "role": "user", 
                    "content": b64string,
                    "type": "image"}
            st.session_state.messages.append(message)

            transcribed_msg = get_transcribed_text(b64string)
            message = {
                    "role": "admin", 
                    "content": transcribed_msg,
                    "type": "text"}
            st.session_state.messages.append(message)
            st.session_state.release_file = "false"

# Display or clear chat messages
for message in st.session_state.messages:
    if message["role"] == "admin":
        continue
    with st.chat_message(message["role"]):
        if message["type"] == "text":
            st.write(message["content"])
        elif message["type"] == "image":
            img_io = BytesIO(base64.b64decode(message["content"].encode("utf-8")))
            st.image(img_io)

# User-provided prompt
if prompt := st.chat_input(disabled=not openai_api):
    client = OpenAI()
    st.session_state.messages.append({"role": "user", 
                                      "content": prompt, 
                                      "type": "text"})
    with st.chat_message("user"):
        st.write(prompt)

# Retrieve text prompt from image submission
if prompt is None and \
   st.session_state.messages[-1]["role"] == "admin":
    prompt = st.session_state.messages[-1]["content"]

# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
    with st.chat_message("assistant"):
        with st.spinner("Thinking..."):
            response = generate_llm_response(prompt)
            placeholder = st.empty()
            full_response = ""
            for token in response.response_gen:
                full_response += token
                placeholder.markdown(full_response)
            placeholder.markdown(full_response)

    message = {"role": "assistant", 
               "content": full_response,
               "type": "text"}
    st.session_state.messages.append(message)

# Trigger feedback
if st.session_state.feedback:
    result = streamlit_feedback(
                feedback_type="thumbs",
                optional_text_label="[Optional] Please provide an explanation",
                on_submit=handle_feedback,
                key=f"feedback_{st.session_state.feedback_key}"
    )