Spaces:
Running
Running
File size: 3,548 Bytes
db694c4 a561bc6 db694c4 d026604 a561bc6 d026604 db694c4 d026604 db694c4 d026604 a561bc6 d026604 db694c4 d026604 db694c4 d026604 db694c4 d026604 db694c4 c6352d6 db694c4 5abcb47 db694c4 b6cdc6a db694c4 09f2e2a db694c4 c6352d6 db694c4 d026604 09f2e2a c3572db db694c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import streamlit as st
import os
import openai
from openai import OpenAI
# App title
st.set_page_config(page_title="π¬ Open AI Chatbot")
openai_api = os.getenv("OPENAI_API_KEY")
# Replicate Credentials
with st.sidebar:
st.title("π¬ Open AI Chatbot")
st.write("This chatbot is created using the GPT model from Open AI.")
if openai_api:
pass
elif "OPENAI_API_KEY" in st.secrets:
st.success("API key already provided!", icon="β
")
openai_api = st.secrets["OPENAI_API_KEY"]
else:
openai_api = st.text_input("Enter OpenAI API token:", type="password")
if not (openai_api.startswith("sk-") and len(openai_api)==51):
st.warning("Please enter your credentials!", icon="β οΈ")
else:
st.success("Proceed to entering your prompt message!", icon="π")
### for streamlit purpose
os.environ["OPENAI_API_KEY"] = openai_api
st.subheader("Models and parameters")
selected_model = st.sidebar.selectbox("Choose an OpenAI model",
["gpt-3.5-turbo-1106", "gpt-4-1106-preview"],
key="selected_model")
temperature = st.sidebar.slider("temperature", min_value=0.01, max_value=2.0,
value=0.1, step=0.01)
st.markdown("π Reach out to SakiMilo to learn how to create this app!")
# Store LLM generated responses
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant",
"content": "How may I assist you today?"}]
# Display or clear chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
def clear_chat_history():
st.session_state.messages = [{"role": "assistant",
"content": "How may I assist you today?"}]
st.sidebar.button("Clear Chat History", on_click=clear_chat_history)
def generate_llm_response(client, prompt_input):
system_content = ("You are a helpful assistant. "
"You do not respond as 'User' or pretend to be 'User'. "
"You only respond once as 'Assistant'."
)
completion = client.chat.completions.create(
model=selected_model,
messages=[
{"role": "system", "content": system_content},
] + st.session_state.messages,
temperature=temperature,
stream=True
)
return completion
# User-provided prompt
if prompt := st.chat_input(disabled=not openai_api):
client = OpenAI()
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = generate_llm_response(client, prompt)
placeholder = st.empty()
full_response = ""
for chunk in response:
if chunk.choices[0].delta.content is not None:
full_response += chunk.choices[0].delta.content
placeholder.markdown(full_response)
placeholder.markdown(full_response)
message = {"role": "assistant", "content": full_response}
st.session_state.messages.append(message) |