File size: 3,548 Bytes
db694c4
 
 
 
 
 
 
 
a561bc6
db694c4
 
 
d026604
 
a561bc6
 
 
d026604
 
db694c4
d026604
 
 
db694c4
d026604
a561bc6
 
d026604
db694c4
d026604
 
 
 
 
 
 
db694c4
 
 
d026604
 
db694c4
 
 
 
 
 
 
d026604
 
 
db694c4
c6352d6
db694c4
5abcb47
 
db694c4
 
 
 
 
 
 
b6cdc6a
 
db694c4
09f2e2a
db694c4
 
 
 
 
 
 
 
 
 
 
 
c6352d6
db694c4
d026604
09f2e2a
c3572db
 
 
db694c4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import streamlit as st
import os

import openai
from openai import OpenAI

# App title
st.set_page_config(page_title="πŸ’¬ Open AI Chatbot")
openai_api = os.getenv("OPENAI_API_KEY")

# Replicate Credentials
with st.sidebar:
    st.title("πŸ’¬ Open AI Chatbot")
    st.write("This chatbot is created using the GPT model from Open AI.")
    if openai_api:
        pass
    elif "OPENAI_API_KEY" in st.secrets:
        st.success("API key already provided!", icon="βœ…")
        openai_api = st.secrets["OPENAI_API_KEY"]
    else:
        openai_api = st.text_input("Enter OpenAI API token:", type="password")
        if not (openai_api.startswith("sk-") and len(openai_api)==51):
            st.warning("Please enter your credentials!", icon="⚠️")
        else:
            st.success("Proceed to entering your prompt message!", icon="πŸ‘‰")

    ### for streamlit purpose
    os.environ["OPENAI_API_KEY"] = openai_api

    st.subheader("Models and parameters")
    selected_model = st.sidebar.selectbox("Choose an OpenAI model", 
                                          ["gpt-3.5-turbo-1106", "gpt-4-1106-preview"], 
                                           key="selected_model")
    temperature = st.sidebar.slider("temperature", min_value=0.01, max_value=2.0, 
                                    value=0.1, step=0.01)
    st.markdown("πŸ“– Reach out to SakiMilo to learn how to create this app!")

# Store LLM generated responses
if "messages" not in st.session_state.keys():
    st.session_state.messages = [{"role": "assistant", 
                                  "content": "How may I assist you today?"}]

# Display or clear chat messages
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.write(message["content"])

def clear_chat_history():
    st.session_state.messages = [{"role": "assistant", 
                                  "content": "How may I assist you today?"}]
st.sidebar.button("Clear Chat History", on_click=clear_chat_history)

def generate_llm_response(client, prompt_input):
    system_content = ("You are a helpful assistant. "
                      "You do not respond as 'User' or pretend to be 'User'. "
                      "You only respond once as 'Assistant'."
    )

    completion = client.chat.completions.create(
                    model=selected_model,
                    messages=[
                            {"role": "system", "content": system_content},
                    ] + st.session_state.messages,
                    temperature=temperature,
                    stream=True
    )
    return completion

# User-provided prompt
if prompt := st.chat_input(disabled=not openai_api):
    client = OpenAI()
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.write(prompt)

# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
    with st.chat_message("assistant"):
        with st.spinner("Thinking..."):
            response = generate_llm_response(client, prompt)
            placeholder = st.empty()
            full_response = ""
            for chunk in response:
                if chunk.choices[0].delta.content is not None:
                    full_response += chunk.choices[0].delta.content
                    placeholder.markdown(full_response)
            placeholder.markdown(full_response)
    message = {"role": "assistant", "content": full_response}
    st.session_state.messages.append(message)