Spaces:
Running
Running
File size: 5,056 Bytes
23e06a5 b580d80 23e06a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import argparse
import asyncio
import json
import math
import sys
# https://github.com/jerryjliu/llama_index/issues/7244:
asyncio.set_event_loop(asyncio.new_event_loop())
from millify import millify
import numpy as np
import streamlit as st
from streamlit_extras.switch_page_button import switch_page
from trulens_eval.db_migration import MIGRATION_UNKNOWN_STR
from trulens_eval.ux.styles import CATEGORY
st.runtime.legacy_caching.clear_cache()
from trulens_eval import Tru
from trulens_eval.ux import styles
from trulens_eval.ux.components import draw_metadata
st.set_page_config(page_title="Leaderboard", layout="wide")
from trulens_eval.ux.add_logo import add_logo_and_style_overrides
add_logo_and_style_overrides()
database_url = None
def streamlit_app():
tru = Tru(database_file="./models/trulens_eval.sqlite")
lms = tru.db
# Set the title and subtitle of the app
st.title("App Leaderboard")
st.write(
"Average feedback values displayed in the range from 0 (worst) to 1 (best)."
)
df, feedback_col_names = lms.get_records_and_feedback([])
feedback_defs = lms.get_feedback_defs()
feedback_directions = {
(
row.feedback_json.get("supplied_name", "") or
row.feedback_json["implementation"]["name"]
): row.feedback_json.get("higher_is_better", True)
for _, row in feedback_defs.iterrows()
}
if df.empty:
st.write("No records yet...")
return
df = df.sort_values(by="app_id")
if df.empty:
st.write("No records yet...")
apps = list(df.app_id.unique())
st.markdown("""---""")
for app in apps:
app_df = df.loc[df.app_id == app]
if app_df.empty:
continue
app_str = app_df["app_json"].iloc[0]
app_json = json.loads(app_str)
metadata = app_json.get("metadata")
# st.text('Metadata' + str(metadata))
st.header(app, help=draw_metadata(metadata))
app_feedback_col_names = [
col_name for col_name in feedback_col_names
if not app_df[col_name].isna().all()
]
col1, col2, col3, col4, *feedback_cols, col99 = st.columns(
5 + len(app_feedback_col_names)
)
latency_mean = (
app_df["latency"].
apply(lambda td: td if td != MIGRATION_UNKNOWN_STR else None).mean()
)
# app_df_feedback = df.loc[df.app_id == app]
col1.metric("Records", len(app_df))
col2.metric(
"Average Latency (Seconds)",
(
f"{millify(round(latency_mean, 5), precision=2)}"
if not math.isnan(latency_mean) else "nan"
),
)
col3.metric(
"Total Cost (USD)",
f"${millify(round(sum(cost for cost in app_df.total_cost if cost is not None), 5), precision = 2)}",
)
col4.metric(
"Total Tokens",
millify(
sum(
tokens for tokens in app_df.total_tokens
if tokens is not None
),
precision=2
),
)
for i, col_name in enumerate(app_feedback_col_names):
mean = app_df[col_name].mean()
st.write(
styles.stmetricdelta_hidearrow,
unsafe_allow_html=True,
)
higher_is_better = feedback_directions.get(col_name, True)
if "distance" in col_name:
feedback_cols[i].metric(
label=col_name,
value=f"{round(mean, 2)}",
delta_color="normal"
)
else:
cat = CATEGORY.of_score(mean, higher_is_better=higher_is_better)
feedback_cols[i].metric(
label=col_name,
value=f"{round(mean, 2)}",
delta=f"{cat.icon} {cat.adjective}",
delta_color=(
"normal" if cat.compare(
mean, CATEGORY.PASS[cat.direction].threshold
) else "inverse"
),
)
with col99:
if st.button("Select App", key=f"app-selector-{app}"):
st.session_state.app = app
switch_page("Evaluations")
# with st.expander("Model metadata"):
# st.markdown(draw_metadata(metadata))
st.markdown("""---""")
# Define the main function to run the app
def main():
streamlit_app()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--database-url", default=None)
try:
args = parser.parse_args()
except SystemExit as e:
# This exception will be raised if --help or invalid command line arguments
# are used. Currently, streamlit prevents the program from exiting normally,
# so we have to do a hard exit.
sys.exit(e.code)
database_url = args.database_url
main()
|