Spaces:
Running
Running
File size: 10,699 Bytes
ac8a60b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import streamlit as st
from streamlit_feedback import streamlit_feedback
import os
import pandas as pd
import base64
from io import BytesIO
import nest_asyncio
import chromadb
from llama_index.legacy import (
VectorStoreIndex,
SimpleDirectoryReader,
ServiceContext,
Document
)
from llama_index.legacy.vector_stores.chroma import ChromaVectorStore
from llama_index.legacy.storage.storage_context import StorageContext
from llama_index.legacy.embeddings import HuggingFaceEmbedding
from llama_index.legacy.llms import OpenAI
from llama_index.legacy.memory import ChatMemoryBuffer
from vision_api import get_transcribed_text
nest_asyncio.apply()
# App title
st.set_page_config(page_title="π¬ Open AI Chatbot")
openai_api = os.getenv("OPENAI_API_KEY")
# "./raw_documents/HI_Knowledge_Base.pdf"
input_files = ["./raw_documents/HI Chapter Summary Version 1.3.pdf",
"./raw_documents/qna.txt"]
embedding_model = "BAAI/bge-small-en-v1.5"
persisted_vector_db = "./models/chroma_db"
fine_tuned_path = "local:models/fine-tuned-embeddings"
system_content = ("You are a helpful study assistant. "
"You do not respond as 'User' or pretend to be 'User'. "
"You only respond once as 'Assistant'."
)
data_df = pd.DataFrame(
{
"Completion": [30, 40, 100, 10],
}
)
data_df.index = ["Chapter 1", "Chapter 2", "Chapter 3", "Chapter 4"]
# Replicate Credentials
with st.sidebar:
st.title("π¬ Open AI Chatbot")
st.write("This chatbot is created using the GPT model from Open AI.")
if openai_api:
pass
elif "OPENAI_API_KEY" in st.secrets:
st.success("API key already provided!", icon="β
")
openai_api = st.secrets["OPENAI_API_KEY"]
else:
openai_api = st.text_input("Enter OpenAI API token:", type="password")
if not (openai_api.startswith("sk-") and len(openai_api)==51):
st.warning("Please enter your credentials!", icon="β οΈ")
else:
st.success("Proceed to entering your prompt message!", icon="π")
### for streamlit purpose
os.environ["OPENAI_API_KEY"] = openai_api
st.subheader("Models and parameters")
selected_model = st.sidebar.selectbox("Choose an OpenAI model",
["gpt-3.5-turbo-1106", "gpt-4-1106-preview"],
key="selected_model")
temperature = st.sidebar.slider("temperature", min_value=0.0, max_value=2.0,
value=0.0, step=0.01)
st.data_editor(
data_df,
column_config={
"Completion": st.column_config.ProgressColumn(
"Completion %",
help="Percentage of content covered",
format="%.1f%%",
min_value=0,
max_value=100,
),
},
hide_index=False,
)
st.markdown("π Reach out to SakiMilo to learn how to create this app!")
if "init" not in st.session_state.keys():
st.session_state.init = {"warm_started": "No"}
st.session_state.feedback = False
# Store LLM generated responses
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant",
"content": "How may I assist you today?",
"type": "text"}]
if "feedback_key" not in st.session_state:
st.session_state.feedback_key = 0
if "release_file" not in st.session_state:
st.session_state.release_file = "false"
def clear_chat_history():
st.session_state.messages = [{"role": "assistant",
"content": "How may I assist you today?",
"type": "text"}]
chat_engine = get_query_engine(input_files=input_files,
llm_model=selected_model,
temperature=temperature,
embedding_model=embedding_model,
fine_tuned_path=fine_tuned_path,
system_content=system_content,
persisted_path=persisted_vector_db)
chat_engine.reset()
st.sidebar.button("Clear Chat History", on_click=clear_chat_history)
if st.sidebar.button("I want to submit a feedback!"):
st.session_state.feedback = True
st.session_state.feedback_key += 1 # overwrite feedback component
@st.cache_resource
def get_document_object(input_files):
documents = SimpleDirectoryReader(input_files=input_files).load_data()
document = Document(text="\n\n".join([doc.text for doc in documents]))
return document
@st.cache_resource
def get_llm_object(selected_model, temperature):
llm = OpenAI(model=selected_model, temperature=temperature)
return llm
@st.cache_resource
def get_embedding_model(model_name, fine_tuned_path=None):
if fine_tuned_path is None:
print(f"loading from `{model_name}` from huggingface")
embed_model = HuggingFaceEmbedding(model_name=model_name)
else:
print(f"loading from local `{fine_tuned_path}`")
embed_model = fine_tuned_path
return embed_model
@st.cache_resource
def get_query_engine(input_files, llm_model, temperature,
embedding_model, fine_tuned_path,
system_content, persisted_path):
llm = get_llm_object(llm_model, temperature)
embedded_model = get_embedding_model(
model_name=embedding_model,
fine_tuned_path=fine_tuned_path
)
service_context = ServiceContext.from_defaults(
llm=llm,
embed_model=embedded_model
)
if os.path.exists(persisted_path):
print("loading from vector database - chroma")
db = chromadb.PersistentClient(path=persisted_path)
chroma_collection = db.get_or_create_collection("quickstart")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(
vector_store=vector_store
)
index = VectorStoreIndex.from_vector_store(
vector_store=vector_store,
service_context=service_context,
storage_context=storage_context
)
else:
print("create in-memory vector store")
document = get_document_object(input_files)
index = VectorStoreIndex.from_documents(
[document],
service_context=service_context
)
memory = ChatMemoryBuffer.from_defaults(token_limit=15000)
chat_engine = index.as_chat_engine(
chat_mode="context",
memory=memory,
system_prompt=system_content
)
return chat_engine
def generate_llm_response(prompt_input):
chat_engine = get_query_engine(input_files=input_files,
llm_model=selected_model,
temperature=temperature,
embedding_model=embedding_model,
fine_tuned_path=fine_tuned_path,
system_content=system_content,
persisted_path=persisted_vector_db)
# st.session_state.messages
response = chat_engine.stream_chat(prompt_input)
return response
def handle_feedback(user_response):
st.toast("βοΈ Feedback received!")
st.session_state.feedback = False
def handle_image_upload():
st.session_state.release_file = "true"
# Warm start
if st.session_state.init["warm_started"] == "No":
clear_chat_history()
st.session_state.init["warm_started"] = "Yes"
# Image upload option
with st.sidebar:
image_file = st.file_uploader("Upload your image here...",
type=["png", "jpeg", "jpg"],
on_change=handle_image_upload)
if st.session_state.release_file == "true" and image_file:
with st.spinner("Uploading..."):
b64string = base64.b64encode(image_file.read()).decode('utf-8')
message = {
"role": "user",
"content": b64string,
"type": "image"}
st.session_state.messages.append(message)
transcribed_msg = get_transcribed_text(b64string)
message = {
"role": "admin",
"content": transcribed_msg,
"type": "text"}
st.session_state.messages.append(message)
st.session_state.release_file = "false"
# Display or clear chat messages
for message in st.session_state.messages:
if message["role"] == "admin":
continue
with st.chat_message(message["role"]):
if message["type"] == "text":
st.write(message["content"])
elif message["type"] == "image":
img_io = BytesIO(base64.b64decode(message["content"].encode("utf-8")))
st.image(img_io)
# User-provided prompt
if prompt := st.chat_input(disabled=not openai_api):
client = OpenAI()
st.session_state.messages.append({"role": "user",
"content": prompt,
"type": "text"})
with st.chat_message("user"):
st.write(prompt)
# Retrieve text prompt from image submission
if prompt is None and \
st.session_state.messages[-1]["role"] == "admin":
prompt = st.session_state.messages[-1]["content"]
# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = generate_llm_response(prompt)
placeholder = st.empty()
full_response = ""
for token in response.response_gen:
full_response += token
placeholder.markdown(full_response)
placeholder.markdown(full_response)
message = {"role": "assistant",
"content": full_response,
"type": "text"}
st.session_state.messages.append(message)
# Trigger feedback
if st.session_state.feedback:
result = streamlit_feedback(
feedback_type="thumbs",
optional_text_label="[Optional] Please provide an explanation",
on_submit=handle_feedback,
key=f"feedback_{st.session_state.feedback_key}"
) |