File size: 6,020 Bytes
b580d80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import utils
import os

import numpy as np
import nest_asyncio
import openai
import chromadb

from llama_index.legacy import (
                VectorStoreIndex,
                SimpleDirectoryReader
)                               
from llama_index.core import (               
                StorageContext,
                Document,
                Settings
)
from llama_index.vector_stores.chroma.base import ChromaVectorStore
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.huggingface.base import HuggingFaceEmbedding
from trulens_eval import Tru

from utils import get_prebuilt_trulens_recorder
import time

nest_asyncio.apply()
openai.api_key = utils.get_openai_api_key()

def main():
    
    if not os.path.exists("./default.sqlite"):
        
        start_time = time.time()

        llm = OpenAI(model="gpt-3.5-turbo-1106", temperature=0.0)
        fine_tuned_path = "local:./models/fine-tuned-embeddings"
        
        Settings.llm = llm
        Settings.embed_model = fine_tuned_path

        db = chromadb.PersistentClient(path="./models/chroma_db")
        chroma_collection = db.get_or_create_collection("quickstart")

        # assign chroma as the vector_store to the context
        vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
        storage_context = StorageContext.from_defaults(vector_store=vector_store)

        # create your index
        index = VectorStoreIndex.from_vector_store(
            vector_store=vector_store,
            storage_context=storage_context
        )
        query_engine = index.as_query_engine()

        separator = "\n\n"
        eval_questions = []
        with open('./raw_documents/eval_questions.txt', 'r') as file:
            content = file.read()

        for question in content.split(separator):
            print(question)
            print(separator)
            eval_questions.append(question.strip())

        response = query_engine.query(eval_questions[0])
        print(str(response))

        tru = Tru(database_file="./models/trulens_eval.sqlite")
        tru_recorder = get_prebuilt_trulens_recorder(query_engine,
                                                     app_id="Direct Query Engine")
        
        print("Sending each question to llm ..")
        with tru_recorder as recording:
            for question in eval_questions:
                response = query_engine.query(question)

        records, feedback = tru.get_records_and_feedback(app_ids=[])

        os.makedirs("./results", exist_ok=True)
        records.to_csv("./results/records.csv", index=False)

        print(tru.db.engine.url.render_as_string(hide_password=False))
        
        end_time = time.time()
        time_spent_mins = (end_time - start_time) / 60
        with open("./results/time_cost.txt", "w") as fp:
            fp.write(f"Takes {int(time_spent_mins)} mins to create llm evaluation.")

if __name__ == "__main__":

    # main()
    if False:
        start_time = time.time()

        llm = OpenAI(model="gpt-3.5-turbo-1106", temperature=0.0)
        fine_tuned_path = "local:./models/fine-tuned-embeddings"
        
        Settings.llm = llm
        Settings.embed_model = fine_tuned_path

        db = chromadb.PersistentClient(path="./models/chroma_db")
        chroma_collection = db.get_or_create_collection("quickstart")

        # assign chroma as the vector_store to the context
        vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
        storage_context = StorageContext.from_defaults(vector_store=vector_store)

        # create your index
        index = VectorStoreIndex.from_vector_store(
            vector_store=vector_store,
            storage_context=storage_context
        )
        query_engine = index.as_query_engine()

        separator = "\n\n"
        eval_questions = []
        with open('./raw_documents/eval_questions.txt', 'r') as file:
            content = file.read()

        for question in content.split(separator):
            print(question)
            print(separator)
            eval_questions.append(question.strip())

        response = query_engine.query(eval_questions[0])
        print(str(response))



    from trulens_eval import Tru
    tru = Tru()

    documents = SimpleDirectoryReader(
        input_files=["./raw_documents/qna.txt"]
    ).load_data()
    index = VectorStoreIndex.from_documents(documents)

    query_engine = index.as_query_engine()
    response = query_engine.query("Which is not a government healthcare philosophy?")
    print(response)

    from trulens_eval.feedback.provider.openai import OpenAI
    openai = OpenAI()

    # select context to be used in feedback. the location of context is app specific.
    from trulens_eval.app import App
    context = App.select_context(query_engine)

    from trulens_eval import Feedback

    # Define a groundedness feedback function
    from trulens_eval.feedback import Groundedness
    grounded = Groundedness(groundedness_provider=OpenAI())
    f_groundedness = (
        Feedback(grounded.groundedness_measure_with_cot_reasons)
        .on(context.collect()) # collect context chunks into a list
        .on_output()
        .aggregate(grounded.grounded_statements_aggregator)
    )

    # Question/answer relevance between overall question and answer.
    f_qa_relevance = Feedback(openai.relevance).on_input_output()

    # Question/statement relevance between question and each context chunk.
    f_qs_relevance = (
        Feedback(openai.qs_relevance)
        .on_input()
        .on(context)
        .aggregate(np.mean)
    )

    from trulens_eval import TruLlama
    tru_query_engine_recorder = TruLlama(query_engine,
        app_id='LlamaIndex_App1',
        feedbacks=[f_groundedness, f_qa_relevance, f_qs_relevance])
    
    if False:
        # or as context manager
        with tru_query_engine_recorder as recording:
            query_engine.query("Which of the following is TRUE on the similarity of Means Testing and Casemix?")