File size: 7,220 Bytes
db694c4
 
b2b3b83
db694c4
 
47e9340
 
 
 
 
 
 
 
 
 
db694c4
b2b3b83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23e06a5
 
 
 
 
b2b3b83
 
 
 
db694c4
 
a561bc6
db694c4
47e9340
 
 
 
 
 
 
 
b2b3b83
 
 
 
 
 
 
db694c4
 
d026604
 
a561bc6
 
 
d026604
 
db694c4
d026604
 
 
db694c4
d026604
a561bc6
 
d026604
db694c4
d026604
 
 
 
 
 
b2b3b83
 
 
 
 
 
 
 
 
 
 
 
 
 
d026604
db694c4
47e9340
 
 
db694c4
 
d026604
 
db694c4
 
 
 
 
 
 
d026604
 
47e9340
 
 
 
 
 
d026604
db694c4
47e9340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db694c4
 
47e9340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db694c4
 
 
 
 
 
 
 
 
 
 
 
47e9340
 
db694c4
d026604
47e9340
 
 
db694c4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import streamlit as st
import os
import pandas as pd

import openai

# from openai import OpenAI
from llama_index.llms import OpenAI

from llama_index import SimpleDirectoryReader
from llama_index import Document
from llama_index import VectorStoreIndex
from llama_index import ServiceContext
from llama_index.embeddings import HuggingFaceEmbedding
from llama_index.memory import ChatMemoryBuffer

import pkg_resources
import shutil
import main

### To trigger trulens evaluation
main.main()

### Finally, start streamlit app
leaderboard_path = pkg_resources.resource_filename(
                    "trulens_eval", "Leaderboard.py"
                )
evaluation_path = pkg_resources.resource_filename(
                    "trulens_eval", "pages/Evaluations.py"
                )
ux_path = pkg_resources.resource_filename(
                    "trulens_eval", "ux"
                )

os.makedirs("./pages", exist_ok=True)
shutil.copyfile(leaderboard_path, os.path.join("./pages", "1_Leaderboard.py"))
shutil.copyfile(evaluation_path, os.path.join("./pages", "2_Evaluations.py"))

if os.path.exists("./ux"):
    shutil.rmtree("./ux")
shutil.copytree(ux_path, "./ux")

# App title
st.set_page_config(page_title="πŸ’¬ Open AI Chatbot")
openai_api = os.getenv("OPENAI_API_KEY")

# "./raw_documents/HI_Knowledge_Base.pdf"
input_files = ["./raw_documents/HI Chapter Summary Version 1.3.pdf"]
embedding_model = "BAAI/bge-small-en-v1.5"
system_content = ("You are a helpful study assistant. "
                  "You do not respond as 'User' or pretend to be 'User'. "
                  "You only respond once as 'Assistant'."
)

data_df = pd.DataFrame(
    {
        "Completion": [30, 40, 100, 10],
    }
)
data_df.index = ["Chapter 1", "Chapter 2", "Chapter 3", "Chapter 4"]

# Replicate Credentials
with st.sidebar:
    st.title("πŸ’¬ Open AI Chatbot")
    st.write("This chatbot is created using the GPT model from Open AI.")
    if openai_api:
        pass
    elif "OPENAI_API_KEY" in st.secrets:
        st.success("API key already provided!", icon="βœ…")
        openai_api = st.secrets["OPENAI_API_KEY"]
    else:
        openai_api = st.text_input("Enter OpenAI API token:", type="password")
        if not (openai_api.startswith("sk-") and len(openai_api)==51):
            st.warning("Please enter your credentials!", icon="⚠️")
        else:
            st.success("Proceed to entering your prompt message!", icon="πŸ‘‰")

    ### for streamlit purpose
    os.environ["OPENAI_API_KEY"] = openai_api

    st.subheader("Models and parameters")
    selected_model = st.sidebar.selectbox("Choose an OpenAI model", 
                                          ["gpt-3.5-turbo-1106", "gpt-4-1106-preview"], 
                                           key="selected_model")
    temperature = st.sidebar.slider("temperature", min_value=0.01, max_value=2.0, 
                                    value=0.1, step=0.01)
    st.data_editor(
        data_df,
        column_config={
            "Completion": st.column_config.ProgressColumn(
                            "Completion %",
                            help="Percentage of content covered",
                            format="%.1f%%",
                            min_value=0,
                            max_value=100,
            ),
        },
        hide_index=False,
    )

    st.markdown("πŸ“– Reach out to SakiMilo to learn how to create this app!")

if "init" not in st.session_state.keys():
    st.session_state.init = {"warm_start": "No"}

# Store LLM generated responses
if "messages" not in st.session_state.keys():
    st.session_state.messages = [{"role": "assistant", 
                                  "content": "How may I assist you today?"}]

# Display or clear chat messages
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.write(message["content"])

def clear_chat_history():
    st.session_state.messages = [{"role": "assistant", 
                                  "content": "How may I assist you today?"}]
    chat_engine = get_query_engine(input_files=input_files, 
                                   llm_model=selected_model, 
                                   temperature=temperature,
                                   embedding_model=embedding_model,
                                   system_content=system_content)
    chat_engine.reset()
st.sidebar.button("Clear Chat History", on_click=clear_chat_history)

@st.cache_resource
def get_document_object(input_files):
    documents = SimpleDirectoryReader(input_files=input_files).load_data()
    document = Document(text="\n\n".join([doc.text for doc in documents]))
    return document

@st.cache_resource
def get_llm_object(selected_model, temperature):
    llm = OpenAI(model=selected_model, temperature=temperature)
    return llm

@st.cache_resource
def get_embedding_model(model_name):
    embed_model = HuggingFaceEmbedding(model_name=model_name)
    return embed_model

@st.cache_resource
def get_query_engine(input_files, llm_model, temperature, 
                     embedding_model, system_content):

    document = get_document_object(input_files)
    llm = get_llm_object(llm_model, temperature)
    embedded_model = get_embedding_model(embedding_model)

    service_context = ServiceContext.from_defaults(llm=llm, embed_model=embedded_model)
    index = VectorStoreIndex.from_documents([document], service_context=service_context)
    memory = ChatMemoryBuffer.from_defaults(token_limit=15000)

    # chat_engine = index.as_query_engine(streaming=True)
    chat_engine = index.as_chat_engine(
        chat_mode="context",
        memory=memory,
        system_prompt=system_content
    )

    return chat_engine

def generate_llm_response(prompt_input):
    chat_engine = get_query_engine(input_files=input_files, 
                                   llm_model=selected_model, 
                                   temperature=temperature,
                                   embedding_model=embedding_model,
                                   system_content=system_content)
    
    # st.session_state.messages
    response = chat_engine.stream_chat(prompt_input)
    return response

# Warm start
if st.session_state.init["warm_start"] == "No":
    clear_chat_history()
    st.session_state.init["warm_start"] = "Yes"

# User-provided prompt
if prompt := st.chat_input(disabled=not openai_api):
    client = OpenAI()
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.write(prompt)

# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
    with st.chat_message("assistant"):
        with st.spinner("Thinking..."):
            # response = generate_llm_response(client, prompt)
            response = generate_llm_response(prompt)
            placeholder = st.empty()
            full_response = ""
            for token in response.response_gen:
                full_response += token
                placeholder.markdown(full_response)
            placeholder.markdown(full_response)
    message = {"role": "assistant", "content": full_response}
    st.session_state.messages.append(message)