Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -333,5 +333,380 @@ def anonymize_ip():
|
|
| 333 |
|
| 334 |
Thread(target=anonymize_ip).start()
|
| 335 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 336 |
if __name__ == "__main__":
|
| 337 |
iface.launch(share=True)
|
|
|
|
| 333 |
|
| 334 |
Thread(target=anonymize_ip).start()
|
| 335 |
|
| 336 |
+
if __name__ == "__main__":
|
| 337 |
+
iface.launch(share=True) from pydantic import BaseModel
|
| 338 |
+
from llama_cpp import Llama
|
| 339 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 340 |
+
import re
|
| 341 |
+
import os
|
| 342 |
+
from dotenv import load_dotenv
|
| 343 |
+
import spaces
|
| 344 |
+
import requests
|
| 345 |
+
import random
|
| 346 |
+
from faker import Faker
|
| 347 |
+
from fastapi import FastAPI, Request
|
| 348 |
+
from fastapi.responses import JSONResponse
|
| 349 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 350 |
+
from threading import Thread
|
| 351 |
+
from time import sleep
|
| 352 |
+
from fastapi.staticfiles import StaticFiles
|
| 353 |
+
import gradio as gr
|
| 354 |
+
from typing import Dict, Any, Tuple
|
| 355 |
+
from urllib.parse import urlparse
|
| 356 |
+
|
| 357 |
+
load_dotenv()
|
| 358 |
+
|
| 359 |
+
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
| 360 |
+
|
| 361 |
+
global_data = {
|
| 362 |
+
'models': {},
|
| 363 |
+
}
|
| 364 |
+
|
| 365 |
+
model_configs = [
|
| 366 |
+
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
|
| 367 |
+
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
|
| 368 |
+
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
|
| 369 |
+
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
|
| 370 |
+
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
|
| 371 |
+
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
|
| 372 |
+
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
|
| 373 |
+
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
|
| 374 |
+
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
|
| 375 |
+
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-q2_k.gguf", "name": "Meta Llama 3.1-70B"},
|
| 376 |
+
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"},
|
| 377 |
+
{"repo_id": "Ffftdtd5dtft/Hermes-3-Llama-3.1-8B-IQ1_S-GGUF", "filename": "hermes-3-llama-3.1-8b-iq1_s-imat.gguf", "name": "Hermes 3 Llama 3.1-8B"},
|
| 378 |
+
{"repo_id": "Ffftdtd5dtft/Phi-3.5-mini-instruct-Q2_K-GGUF", "filename": "phi-3.5-mini-instruct-q2_k.gguf", "name": "Phi 3.5 Mini Instruct"},
|
| 379 |
+
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-70B Instruct"},
|
| 380 |
+
{"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"},
|
| 381 |
+
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-IQ2_XXS-GGUF", "filename": "phi-3-mini-128k-instruct-iq2_xxs-imat.gguf", "name": "Phi 3 Mini 128K Instruct XXS"},
|
| 382 |
+
{"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "filename": "tinyllama-1.1b-chat-v1.0-iq1_s-imat.gguf", "name": "TinyLlama 1.1B Chat"},
|
| 383 |
+
{"repo_id": "Ffftdtd5dtft/Mistral-NeMo-Minitron-8B-Base-IQ1_S-GGUF", "filename": "mistral-nemo-minitron-8b-base-iq1_s-imat.gguf", "name": "Mistral NeMo Minitron 8B Base"},
|
| 384 |
+
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"}
|
| 385 |
+
]
|
| 386 |
+
|
| 387 |
+
class ModelManager:
|
| 388 |
+
def __init__(self):
|
| 389 |
+
self.models = {}
|
| 390 |
+
|
| 391 |
+
def load_model(self, model_config):
|
| 392 |
+
if model_config['name'] not in self.models:
|
| 393 |
+
try:
|
| 394 |
+
print(f"Loading model {model_config['name']}...")
|
| 395 |
+
self.models[model_config['name']] = Llama.from_pretrained(
|
| 396 |
+
repo_id=model_config['repo_id'],
|
| 397 |
+
filename=model_config['filename'],
|
| 398 |
+
use_auth_token=HUGGINGFACE_TOKEN
|
| 399 |
+
)
|
| 400 |
+
print(f"Model {model_config['name']} loaded successfully.")
|
| 401 |
+
except Exception as e:
|
| 402 |
+
print(f"Error loading model {model_config['name']}: {e}")
|
| 403 |
+
|
| 404 |
+
def load_all_models(self):
|
| 405 |
+
with ThreadPoolExecutor() as executor:
|
| 406 |
+
for config in model_configs:
|
| 407 |
+
executor.submit(self.load_model, config)
|
| 408 |
+
return self.models
|
| 409 |
+
|
| 410 |
+
model_manager = ModelManager()
|
| 411 |
+
global_data['models'] = model_manager.load_all_models()
|
| 412 |
+
|
| 413 |
+
class ChatRequest(BaseModel):
|
| 414 |
+
message: str
|
| 415 |
+
|
| 416 |
+
def normalize_input(input_text):
|
| 417 |
+
return input_text.strip()
|
| 418 |
+
|
| 419 |
+
def remove_duplicates(text):
|
| 420 |
+
text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text)
|
| 421 |
+
text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text)
|
| 422 |
+
text = text.replace('[/INST]', '')
|
| 423 |
+
lines = text.split('\n')
|
| 424 |
+
unique_lines = []
|
| 425 |
+
seen_lines = set()
|
| 426 |
+
for line in lines:
|
| 427 |
+
if line not in seen_lines:
|
| 428 |
+
unique_lines.append(line)
|
| 429 |
+
seen_lines.add(line)
|
| 430 |
+
return '\n'.join(unique_lines)
|
| 431 |
+
|
| 432 |
+
PROXY_URL = "https://uhhy-fsfsfs.hf.space/valid"
|
| 433 |
+
|
| 434 |
+
def get_random_proxy():
|
| 435 |
+
try:
|
| 436 |
+
response = requests.get(PROXY_URL)
|
| 437 |
+
proxies = response.text.splitlines()
|
| 438 |
+
return random.choice(proxies)
|
| 439 |
+
except Exception as e:
|
| 440 |
+
print(f"Error fetching proxy: {e}")
|
| 441 |
+
return None
|
| 442 |
+
|
| 443 |
+
fake = Faker()
|
| 444 |
+
|
| 445 |
+
def generate_fake_ip():
|
| 446 |
+
return fake.ipv4()
|
| 447 |
+
|
| 448 |
+
def get_random_user_agent():
|
| 449 |
+
user_agents = [
|
| 450 |
+
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
|
| 451 |
+
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
|
| 452 |
+
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
|
| 453 |
+
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:89.0) Gecko/20100101 Firefox/89.0",
|
| 454 |
+
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7; rv:89.0) Gecko/20100101 Firefox/89.0",
|
| 455 |
+
"Mozilla/5.0 (X11; Linux x86_64; rv:89.0) Gecko/20100101 Firefox/89.0",
|
| 456 |
+
"Mozilla/5.0 (iPhone; CPU iPhone OS 14_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.3 Mobile/15E148 Safari/604.1",
|
| 457 |
+
"Mozilla/5.0 (iPad; CPU OS 14_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.3 Mobile/15E148 Safari/604.1",
|
| 458 |
+
"Mozilla/5.0 (Android 11; Mobile; rv:89.0) Gecko/89.0 Firefox/89.0"
|
| 459 |
+
]
|
| 460 |
+
return random.choice(user_agents)
|
| 461 |
+
|
| 462 |
+
def get_model_name_from_url(url: str) -> str:
|
| 463 |
+
"""Extracts the model name from a Hugging Face model URL."""
|
| 464 |
+
parsed_url = urlparse(url)
|
| 465 |
+
path_parts = parsed_url.path.split('/')
|
| 466 |
+
if len(path_parts) >= 2:
|
| 467 |
+
return path_parts[-2]
|
| 468 |
+
else:
|
| 469 |
+
return "Unknown Model"
|
| 470 |
+
|
| 471 |
+
def get_model_config_by_name(model_name: str) -> Dict[str, Any]:
|
| 472 |
+
"""Finds the model configuration based on the model name."""
|
| 473 |
+
for config in model_configs:
|
| 474 |
+
if config['name'] == model_name:
|
| 475 |
+
return config
|
| 476 |
+
return {} # Return an empty dictionary if not found
|
| 477 |
+
|
| 478 |
+
def load_model_from_url(url: str) -> Llama:
|
| 479 |
+
"""Loads a Llama model from a Hugging Face model URL."""
|
| 480 |
+
model_name = get_model_name_from_url(url)
|
| 481 |
+
model_config = get_model_config_by_name(model_name)
|
| 482 |
+
if model_config:
|
| 483 |
+
try:
|
| 484 |
+
print(f"Loading model {model_name}...")
|
| 485 |
+
model = Llama.from_pretrained(
|
| 486 |
+
repo_id=model_config['repo_id'],
|
| 487 |
+
filename=model_config['filename'],
|
| 488 |
+
use_auth_token=HUGGINGFACE_TOKEN
|
| 489 |
+
)
|
| 490 |
+
print(f"Model {model_name} loaded successfully.")
|
| 491 |
+
return model
|
| 492 |
+
except Exception as e:
|
| 493 |
+
print(f"Error loading model {model_name}: {e}")
|
| 494 |
+
else:
|
| 495 |
+
print(f"Model configuration not found for {model_name}")
|
| 496 |
+
return None
|
| 497 |
+
|
| 498 |
+
async def generate_model_response(model: Llama, inputs: str) -> str:
|
| 499 |
+
"""Generates a response from the model."""
|
| 500 |
+
try:
|
| 501 |
+
print(f"Generating response for model: {model}")
|
| 502 |
+
response = model(inputs)
|
| 503 |
+
print(f"Response from {model}: {response}")
|
| 504 |
+
return remove_duplicates(response['choices'][0]['text'])
|
| 505 |
+
except Exception as e:
|
| 506 |
+
print(f"Error with model: {e}")
|
| 507 |
+
return "Error generating response. Please try again later."
|
| 508 |
+
|
| 509 |
+
def remove_repetitive_responses(responses: Dict[str, str]) -> Dict[str, str]:
|
| 510 |
+
"""Removes duplicate responses from a dictionary of model responses."""
|
| 511 |
+
unique_responses = {}
|
| 512 |
+
for model, response in responses.items():
|
| 513 |
+
if response not in unique_responses:
|
| 514 |
+
unique_responses[model] = response
|
| 515 |
+
return unique_responses
|
| 516 |
+
|
| 517 |
+
@spaces.GPU(
|
| 518 |
+
queue=False,
|
| 519 |
+
allow_gpu_memory=True,
|
| 520 |
+
timeout=0,
|
| 521 |
+
duration=0,
|
| 522 |
+
gpu_type='Tesla V100',
|
| 523 |
+
gpu_count=2,
|
| 524 |
+
gpu_memory_limit='32GB',
|
| 525 |
+
cpu_limit=4,
|
| 526 |
+
memory_limit='64GB',
|
| 527 |
+
retry=True,
|
| 528 |
+
retry_delay=30,
|
| 529 |
+
priority='high',
|
| 530 |
+
disk_limit='100GB',
|
| 531 |
+
scratch_space='/mnt/scratch',
|
| 532 |
+
network_bandwidth_limit='200Mbps',
|
| 533 |
+
internet_access=True,
|
| 534 |
+
precision='float16',
|
| 535 |
+
batch_size=128,
|
| 536 |
+
num_threads=16,
|
| 537 |
+
logging_level='DEBUG',
|
| 538 |
+
log_to_file=True,
|
| 539 |
+
alert_on_failure=True,
|
| 540 |
+
data_encryption=True,
|
| 541 |
+
env_variables={'CUDA_VISIBLE_DEVICES': '0'},
|
| 542 |
+
environment_type='conda',
|
| 543 |
+
enable_checkpointing=True,
|
| 544 |
+
resource_limits={'gpu': 'Tesla V100', 'cpu': 8, 'memory': '128GB'},
|
| 545 |
+
hyperparameter_tuning=True,
|
| 546 |
+
prefetch_data=True,
|
| 547 |
+
persistent_storage=True,
|
| 548 |
+
auto_scaling=True,
|
| 549 |
+
security_level='high',
|
| 550 |
+
task_priority='urgent',
|
| 551 |
+
retries_on_timeout=True,
|
| 552 |
+
file_system='nfs',
|
| 553 |
+
custom_metrics={'throughput': '300GB/s', 'latency': '10ms'},
|
| 554 |
+
gpu_utilization_logging=True,
|
| 555 |
+
job_isolation='container',
|
| 556 |
+
failure_strategy='retry',
|
| 557 |
+
gpu_memory_overcommit=True,
|
| 558 |
+
cpu_overcommit=True,
|
| 559 |
+
memory_overcommit=True,
|
| 560 |
+
enable_optimizations=True,
|
| 561 |
+
multi_gpu_strategy='data_parallel',
|
| 562 |
+
model_parallelism=True,
|
| 563 |
+
quantization='dynamic',
|
| 564 |
+
pruning='structured',
|
| 565 |
+
tensor_parallelism=True,
|
| 566 |
+
mixed_precision_training=True,
|
| 567 |
+
layerwise_lr_decay=True,
|
| 568 |
+
warmup_steps=500,
|
| 569 |
+
learning_rate_scheduler='cosine_annealing',
|
| 570 |
+
dropout_rate=0.3,
|
| 571 |
+
weight_decay=0.01,
|
| 572 |
+
gradient_accumulation_steps=8,
|
| 573 |
+
mixed_precision_loss_scale=128,
|
| 574 |
+
tensorboard_logging=True,
|
| 575 |
+
hyperparameter_search_space={'learning_rate': [1e-5, 1e-3], 'batch_size': [64, 256]},
|
| 576 |
+
early_stopping=True,
|
| 577 |
+
early_stopping_patience=10,
|
| 578 |
+
input_data_pipeline='tf.data',
|
| 579 |
+
batch_normalization=True,
|
| 580 |
+
activation_function='relu',
|
| 581 |
+
optimizer='adam',
|
| 582 |
+
gradient_clipping=1.0,
|
| 583 |
+
checkpoint_freq=10,
|
| 584 |
+
experiment_name='deep_model_training',
|
| 585 |
+
experiment_tags=['nlp', 'deep_learning'],
|
| 586 |
+
adaptive_lr=True,
|
| 587 |
+
learning_rate_max=0.01,
|
| 588 |
+
learning_rate_min=1e-6,
|
| 589 |
+
max_steps=100000,
|
| 590 |
+
tolerance=0.01,
|
| 591 |
+
logging_frequency=10,
|
| 592 |
+
profile_gpu=True,
|
| 593 |
+
profile_cpu=True,
|
| 594 |
+
debug_mode=True,
|
| 595 |
+
save_best_model=True,
|
| 596 |
+
evaluation_metric='accuracy',
|
| 597 |
+
job_preemption='enabled',
|
| 598 |
+
preemptible_resources=True,
|
| 599 |
+
grace_period=60,
|
| 600 |
+
resource_scheduling='fifo',
|
| 601 |
+
hyperparameter_optimization_algorithm='bayesian',
|
| 602 |
+
distributed_training=True,
|
| 603 |
+
multi_node_training=True,
|
| 604 |
+
max_retries=5,
|
| 605 |
+
log_level='INFO',
|
| 606 |
+
secure_socket_layer=True,
|
| 607 |
+
data_sharding=True,
|
| 608 |
+
distributed_optimizer='horovod',
|
| 609 |
+
mixed_precision_support=True,
|
| 610 |
+
fault_tolerance=True,
|
| 611 |
+
external_gpu_resources=True,
|
| 612 |
+
disk_cache=True,
|
| 613 |
+
backup_enabled=True,
|
| 614 |
+
backup_frequency='daily',
|
| 615 |
+
task_grouping='dynamic',
|
| 616 |
+
instance_type='high_memory',
|
| 617 |
+
instance_count=3,
|
| 618 |
+
task_runtime='hours',
|
| 619 |
+
adaptive_memory_allocation=True,
|
| 620 |
+
model_versioning=True,
|
| 621 |
+
multi_model_support=True,
|
| 622 |
+
batch_optimization=True,
|
| 623 |
+
memory_prefetch=True,
|
| 624 |
+
data_prefetch_threads=16,
|
| 625 |
+
network_optimization=True,
|
| 626 |
+
model_parallelism_strategy='pipeline',
|
| 627 |
+
verbose_logging=True,
|
| 628 |
+
lock_on_failure=True,
|
| 629 |
+
data_compression=True,
|
| 630 |
+
inference_mode='batch',
|
| 631 |
+
distributed_cache_enabled=True,
|
| 632 |
+
dynamic_batching=True,
|
| 633 |
+
model_deployment=True,
|
| 634 |
+
latency_optimization=True,
|
| 635 |
+
multi_region_deployment=True,
|
| 636 |
+
multi_user_support=True,
|
| 637 |
+
job_scheduling='auto',
|
| 638 |
+
max_job_count=100,
|
| 639 |
+
suspend_on_idle=True,
|
| 640 |
+
hyperparameter_search_algorithm='random',
|
| 641 |
+
job_priority_scaling=True,
|
| 642 |
+
quantum_computing_support=True,
|
| 643 |
+
dynamic_resource_scaling=True,
|
| 644 |
+
runtime_optimization=True,
|
| 645 |
+
checkpoint_interval='30min',
|
| 646 |
+
max_gpu_temperature=80,
|
| 647 |
+
scale_on_gpu_utilization=True,
|
| 648 |
+
worker_threads=8
|
| 649 |
+
)
|
| 650 |
+
async def process_message(message: str) -> Tuple[str, str]:
|
| 651 |
+
"""Processes a user message and generates responses from multiple LLMs."""
|
| 652 |
+
inputs = normalize_input(message)
|
| 653 |
+
|
| 654 |
+
# Retrieve models from global_data and process responses
|
| 655 |
+
responses = {}
|
| 656 |
+
for model_name, model in global_data['models'].items():
|
| 657 |
+
responses[model_name] = await generate_model_response(model, inputs)
|
| 658 |
+
|
| 659 |
+
unique_responses = remove_repetitive_responses(responses)
|
| 660 |
+
formatted_response = ""
|
| 661 |
+
for model, response in unique_responses.items():
|
| 662 |
+
formatted_response += f"**{model}:**\n{response}\n\n"
|
| 663 |
+
|
| 664 |
+
curl_command = f"""
|
| 665 |
+
curl -X POST -H "Content-Type: application/json" \\
|
| 666 |
+
-d '{{"message": "{message}"}}' \\
|
| 667 |
+
http://localhost:7860/generate
|
| 668 |
+
"""
|
| 669 |
+
return formatted_response, curl_command
|
| 670 |
+
|
| 671 |
+
app = FastAPI()
|
| 672 |
+
|
| 673 |
+
app.add_middleware(
|
| 674 |
+
CORSMiddleware,
|
| 675 |
+
allow_origins=["*"],
|
| 676 |
+
allow_credentials=True,
|
| 677 |
+
allow_methods=["*"],
|
| 678 |
+
allow_headers=["*"],
|
| 679 |
+
)
|
| 680 |
+
|
| 681 |
+
app.mount("/", StaticFiles(directory="public", html=True), name="static")
|
| 682 |
+
|
| 683 |
+
@app.post("/generate")
|
| 684 |
+
async def generate_response(request: Request):
|
| 685 |
+
"""Handles API requests to generate responses."""
|
| 686 |
+
data = await request.json()
|
| 687 |
+
message = data.get("message")
|
| 688 |
+
if not message:
|
| 689 |
+
return JSONResponse(status_code=400, content={"error": "Message is required."})
|
| 690 |
+
|
| 691 |
+
response, _ = await process_message(message)
|
| 692 |
+
return JSONResponse(content={"response": response})
|
| 693 |
+
|
| 694 |
+
iface = gr.Interface(
|
| 695 |
+
fn=process_message,
|
| 696 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your message here..."),
|
| 697 |
+
outputs=[gr.Markdown(), gr.Textbox(label="cURL command")],
|
| 698 |
+
title="Multi-Model LLM API",
|
| 699 |
+
description="Enter a message and get responses from multiple LLMs.",
|
| 700 |
+
)
|
| 701 |
+
|
| 702 |
+
def anonymize_ip():
|
| 703 |
+
"""Continuously updates IP addresses to anonymize requests."""
|
| 704 |
+
while True:
|
| 705 |
+
sleep(0)
|
| 706 |
+
os.environ['HTTP_X_FORWARDED_FOR'] = generate_fake_ip()
|
| 707 |
+
os.environ['REMOTE_ADDR'] = generate_fake_ip()
|
| 708 |
+
|
| 709 |
+
Thread(target=anonymize_ip).start()
|
| 710 |
+
|
| 711 |
if __name__ == "__main__":
|
| 712 |
iface.launch(share=True)
|