Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,6 @@ import uvicorn
|
|
| 6 |
from dotenv import load_dotenv
|
| 7 |
from difflib import SequenceMatcher
|
| 8 |
from tqdm import tqdm
|
| 9 |
-
import multiprocessing
|
| 10 |
|
| 11 |
load_dotenv()
|
| 12 |
|
|
@@ -47,6 +46,7 @@ class ChatRequest(BaseModel):
|
|
| 47 |
top_p: float = 0.95
|
| 48 |
temperature: float = 0.7
|
| 49 |
|
|
|
|
| 50 |
def generate_chat_response(request, llm):
|
| 51 |
try:
|
| 52 |
user_input = normalize_input(request.message)
|
|
@@ -102,6 +102,9 @@ def filter_by_similarity(responses):
|
|
| 102 |
break
|
| 103 |
return best_response
|
| 104 |
|
|
|
|
|
|
|
|
|
|
| 105 |
@app.post("/generate_chat")
|
| 106 |
async def generate_chat(request: ChatRequest):
|
| 107 |
if not request.message.strip():
|
|
@@ -109,12 +112,8 @@ async def generate_chat(request: ChatRequest):
|
|
| 109 |
|
| 110 |
print(f"Procesando solicitud: {request.message}")
|
| 111 |
|
| 112 |
-
# Utilizar un ProcessPoolExecutor para procesar los modelos en paralelo
|
| 113 |
-
def worker_function(llm):
|
| 114 |
-
return generate_chat_response(request, llm)
|
| 115 |
-
|
| 116 |
with ProcessPoolExecutor() as executor:
|
| 117 |
-
futures = [executor.submit(worker_function, llm) for llm in llms.values()]
|
| 118 |
responses = []
|
| 119 |
|
| 120 |
for future in tqdm(as_completed(futures), total=len(futures), desc="Generando respuestas"):
|
|
|
|
| 6 |
from dotenv import load_dotenv
|
| 7 |
from difflib import SequenceMatcher
|
| 8 |
from tqdm import tqdm
|
|
|
|
| 9 |
|
| 10 |
load_dotenv()
|
| 11 |
|
|
|
|
| 46 |
top_p: float = 0.95
|
| 47 |
temperature: float = 0.7
|
| 48 |
|
| 49 |
+
# Funci贸n global para generar respuestas de chat
|
| 50 |
def generate_chat_response(request, llm):
|
| 51 |
try:
|
| 52 |
user_input = normalize_input(request.message)
|
|
|
|
| 102 |
break
|
| 103 |
return best_response
|
| 104 |
|
| 105 |
+
def worker_function(llm, request):
|
| 106 |
+
return generate_chat_response(request, llm)
|
| 107 |
+
|
| 108 |
@app.post("/generate_chat")
|
| 109 |
async def generate_chat(request: ChatRequest):
|
| 110 |
if not request.message.strip():
|
|
|
|
| 112 |
|
| 113 |
print(f"Procesando solicitud: {request.message}")
|
| 114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
with ProcessPoolExecutor() as executor:
|
| 116 |
+
futures = [executor.submit(worker_function, llm, request) for llm in llms.values()]
|
| 117 |
responses = []
|
| 118 |
|
| 119 |
for future in tqdm(as_completed(futures), total=len(futures), desc="Generando respuestas"):
|