Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,50 +6,68 @@ from tqdm import tqdm
|
|
| 6 |
import uvicorn
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
from difflib import SequenceMatcher
|
| 9 |
-
import
|
| 10 |
|
|
|
|
| 11 |
load_dotenv()
|
| 12 |
|
|
|
|
| 13 |
app = FastAPI()
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
# Configuraci贸n de los modelos
|
| 16 |
model_configs = [
|
| 17 |
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf"},
|
| 18 |
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf"},
|
| 19 |
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf"},
|
|
|
|
| 20 |
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf"},
|
| 21 |
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf"},
|
|
|
|
| 22 |
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf"},
|
| 23 |
-
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf"}
|
| 24 |
]
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
class ChatRequest(BaseModel):
|
| 48 |
message: str
|
| 49 |
top_k: int = 50
|
| 50 |
top_p: float = 0.95
|
| 51 |
temperature: float = 0.7
|
| 52 |
|
|
|
|
| 53 |
def generate_chat_response(request, llm):
|
| 54 |
try:
|
| 55 |
user_input = normalize_input(request.message)
|
|
@@ -67,32 +85,48 @@ def generate_chat_response(request, llm):
|
|
| 67 |
def normalize_input(input_text):
|
| 68 |
return input_text.strip()
|
| 69 |
|
| 70 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
seen = set()
|
| 72 |
unique_responses = []
|
| 73 |
for response in responses:
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
seen.add(line)
|
| 79 |
-
unique_lines.add(line)
|
| 80 |
-
unique_responses.append('\n'.join(unique_lines))
|
| 81 |
return unique_responses
|
| 82 |
|
| 83 |
def select_best_response(responses):
|
| 84 |
print("Filtrando respuestas...")
|
| 85 |
-
|
| 86 |
-
|
|
|
|
| 87 |
coherent_responses = filter_by_coherence(unique_responses)
|
| 88 |
best_response = filter_by_similarity(coherent_responses)
|
| 89 |
return best_response
|
| 90 |
|
| 91 |
def filter_by_coherence(responses):
|
| 92 |
-
#
|
|
|
|
|
|
|
| 93 |
return responses
|
| 94 |
|
| 95 |
def filter_by_similarity(responses):
|
|
|
|
|
|
|
| 96 |
responses.sort(key=len, reverse=True)
|
| 97 |
best_response = responses[0]
|
| 98 |
for i in range(1, len(responses)):
|
|
@@ -103,7 +137,7 @@ def filter_by_similarity(responses):
|
|
| 103 |
return best_response
|
| 104 |
|
| 105 |
def worker_function(llm, request, progress_bar):
|
| 106 |
-
print(f"Generando respuesta con el modelo...")
|
| 107 |
response = generate_chat_response(request, llm)
|
| 108 |
progress_bar.update(1)
|
| 109 |
return response
|
|
@@ -116,11 +150,11 @@ async def generate_chat(request: ChatRequest):
|
|
| 116 |
print(f"Procesando solicitud: {request.message}")
|
| 117 |
|
| 118 |
responses = []
|
| 119 |
-
num_models = len(
|
| 120 |
|
| 121 |
with tqdm(total=num_models, desc="Generando respuestas", unit="modelo") as progress_bar:
|
| 122 |
with ThreadPoolExecutor(max_workers=num_models) as executor:
|
| 123 |
-
futures = [executor.submit(worker_function, llm, request, progress_bar) for llm in
|
| 124 |
for future in as_completed(futures):
|
| 125 |
try:
|
| 126 |
response = future.result()
|
|
|
|
| 6 |
import uvicorn
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
from difflib import SequenceMatcher
|
| 9 |
+
import re
|
| 10 |
|
| 11 |
+
# Cargar variables de entorno
|
| 12 |
load_dotenv()
|
| 13 |
|
| 14 |
+
# Inicializar aplicaci贸n FastAPI
|
| 15 |
app = FastAPI()
|
| 16 |
|
| 17 |
+
# Diccionario global para almacenar los modelos
|
| 18 |
+
global_data = {
|
| 19 |
+
'models': []
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
# Configuraci贸n de los modelos
|
| 23 |
model_configs = [
|
| 24 |
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf"},
|
| 25 |
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf"},
|
| 26 |
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf"},
|
| 27 |
+
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf"},
|
| 28 |
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf"},
|
| 29 |
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf"},
|
| 30 |
+
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf"},
|
| 31 |
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf"},
|
| 32 |
+
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf"}
|
| 33 |
]
|
| 34 |
|
| 35 |
+
# Clase para gestionar modelos
|
| 36 |
+
class ModelManager:
|
| 37 |
+
def __init__(self):
|
| 38 |
+
self.models = []
|
| 39 |
+
|
| 40 |
+
def load_model(self, model_config):
|
| 41 |
+
print(f"Cargando modelo {model_config['repo_id']}...")
|
| 42 |
+
return Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename'])
|
| 43 |
+
|
| 44 |
+
def load_all_models(self):
|
| 45 |
+
print("Iniciando carga de modelos...")
|
| 46 |
+
with ThreadPoolExecutor(max_workers=len(model_configs)) as executor:
|
| 47 |
+
futures = [executor.submit(self.load_model, config) for config in model_configs]
|
| 48 |
+
models = []
|
| 49 |
+
for future in tqdm(as_completed(futures), total=len(model_configs), desc="Cargando modelos", unit="modelo"):
|
| 50 |
+
try:
|
| 51 |
+
model = future.result()
|
| 52 |
+
models.append(model)
|
| 53 |
+
print(f"Modelo cargado exitosamente: {model_configs[len(models)-1]['repo_id']}")
|
| 54 |
+
except Exception as e:
|
| 55 |
+
print(f"Error al cargar el modelo: {e}")
|
| 56 |
+
print("Todos los modelos han sido cargados.")
|
| 57 |
+
return models
|
| 58 |
+
|
| 59 |
+
# Instanciar ModelManager y cargar modelos
|
| 60 |
+
model_manager = ModelManager()
|
| 61 |
+
global_data['models'] = model_manager.load_all_models()
|
| 62 |
+
|
| 63 |
+
# Modelo global para la solicitud de chat
|
| 64 |
class ChatRequest(BaseModel):
|
| 65 |
message: str
|
| 66 |
top_k: int = 50
|
| 67 |
top_p: float = 0.95
|
| 68 |
temperature: float = 0.7
|
| 69 |
|
| 70 |
+
# Funci贸n para generar respuestas de chat
|
| 71 |
def generate_chat_response(request, llm):
|
| 72 |
try:
|
| 73 |
user_input = normalize_input(request.message)
|
|
|
|
| 85 |
def normalize_input(input_text):
|
| 86 |
return input_text.strip()
|
| 87 |
|
| 88 |
+
def remove_duplicates(text):
|
| 89 |
+
# Eliminar patrones repetitivos espec铆ficos
|
| 90 |
+
text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text)
|
| 91 |
+
text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text)
|
| 92 |
+
|
| 93 |
+
# Eliminar el marcador [/INST]
|
| 94 |
+
text = text.replace('[/INST]', '')
|
| 95 |
+
|
| 96 |
+
# Generaliza la eliminaci贸n de duplicados
|
| 97 |
+
lines = text.split('\n')
|
| 98 |
+
unique_lines = list(dict.fromkeys(lines))
|
| 99 |
+
return '\n'.join(unique_lines).strip()
|
| 100 |
+
|
| 101 |
+
def remove_repetitive_responses(responses):
|
| 102 |
+
# Filtra respuestas repetitivas
|
| 103 |
seen = set()
|
| 104 |
unique_responses = []
|
| 105 |
for response in responses:
|
| 106 |
+
normalized_response = remove_duplicates(response)
|
| 107 |
+
if normalized_response not in seen:
|
| 108 |
+
seen.add(normalized_response)
|
| 109 |
+
unique_responses.append(normalized_response)
|
|
|
|
|
|
|
|
|
|
| 110 |
return unique_responses
|
| 111 |
|
| 112 |
def select_best_response(responses):
|
| 113 |
print("Filtrando respuestas...")
|
| 114 |
+
responses = remove_repetitive_responses(responses)
|
| 115 |
+
responses = [remove_duplicates(response) for response in responses]
|
| 116 |
+
unique_responses = list(set(responses))
|
| 117 |
coherent_responses = filter_by_coherence(unique_responses)
|
| 118 |
best_response = filter_by_similarity(coherent_responses)
|
| 119 |
return best_response
|
| 120 |
|
| 121 |
def filter_by_coherence(responses):
|
| 122 |
+
# Ordenar respuestas por longitud y similaridad para coherencia b谩sica
|
| 123 |
+
print("Ordenando respuestas por coherencia...")
|
| 124 |
+
responses.sort(key=len, reverse=True)
|
| 125 |
return responses
|
| 126 |
|
| 127 |
def filter_by_similarity(responses):
|
| 128 |
+
# Seleccionar la respuesta m谩s coherente y 煤nica
|
| 129 |
+
print("Filtrando respuestas por similitud...")
|
| 130 |
responses.sort(key=len, reverse=True)
|
| 131 |
best_response = responses[0]
|
| 132 |
for i in range(1, len(responses)):
|
|
|
|
| 137 |
return best_response
|
| 138 |
|
| 139 |
def worker_function(llm, request, progress_bar):
|
| 140 |
+
print(f"Generando respuesta con el modelo {llm}...")
|
| 141 |
response = generate_chat_response(request, llm)
|
| 142 |
progress_bar.update(1)
|
| 143 |
return response
|
|
|
|
| 150 |
print(f"Procesando solicitud: {request.message}")
|
| 151 |
|
| 152 |
responses = []
|
| 153 |
+
num_models = len(global_data['models'])
|
| 154 |
|
| 155 |
with tqdm(total=num_models, desc="Generando respuestas", unit="modelo") as progress_bar:
|
| 156 |
with ThreadPoolExecutor(max_workers=num_models) as executor:
|
| 157 |
+
futures = [executor.submit(worker_function, llm, request, progress_bar) for llm in global_data['models']]
|
| 158 |
for future in as_completed(futures):
|
| 159 |
try:
|
| 160 |
response = future.result()
|