Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,9 +2,9 @@ from pydantic import BaseModel
|
|
2 |
from llama_cpp import Llama
|
3 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
4 |
import re
|
5 |
-
import
|
6 |
-
import
|
7 |
-
|
8 |
import os
|
9 |
from dotenv import load_dotenv
|
10 |
import json
|
@@ -13,50 +13,40 @@ load_dotenv()
|
|
13 |
|
14 |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
}
|
29 |
|
30 |
model_configs = [
|
31 |
{"repo_id": "Hjgugugjhuhjggg/mergekit-ties-tzamfyy-Q2_K-GGUF", "filename": "mergekit-ties-tzamfyy-q2_k.gguf", "name": "my_model"}
|
32 |
-
# Add more models here
|
33 |
]
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
try:
|
42 |
-
model = Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename'], use_auth_token=HUGGINGFACE_TOKEN)
|
43 |
-
self.models[model_config['name']] = model
|
44 |
-
print(f"Model '{model_config['name']}' loaded successfully.")
|
45 |
-
except Exception as e:
|
46 |
-
print(f"Error loading model {model_config['name']}: {e}")
|
47 |
-
self.models[model_config['name']] = None # Indicate loading failure
|
48 |
|
49 |
|
50 |
-
def load_all_models(self):
|
51 |
-
with ThreadPoolExecutor() as executor:
|
52 |
-
futures = [executor.submit(self.load_model, config) for config in model_configs]
|
53 |
-
for future in as_completed(futures):
|
54 |
-
future.result() # Propagate exceptions during loading
|
55 |
-
return self.models
|
56 |
-
|
57 |
-
model_manager = ModelManager()
|
58 |
-
global_data['models'] = model_manager.load_all_models()
|
59 |
-
|
60 |
|
61 |
class ChatRequest(BaseModel):
|
62 |
message: str
|
@@ -69,7 +59,7 @@ def remove_duplicates(text):
|
|
69 |
unique_lines = []
|
70 |
seen_lines = set()
|
71 |
for line in lines:
|
72 |
-
line = line.strip()
|
73 |
if line and line not in seen_lines:
|
74 |
unique_lines.append(line)
|
75 |
seen_lines.add(line)
|
@@ -77,54 +67,37 @@ def remove_duplicates(text):
|
|
77 |
|
78 |
def generate_model_response(model, inputs):
|
79 |
try:
|
80 |
-
if model is None:
|
81 |
return ""
|
82 |
response = model(inputs)
|
83 |
return remove_duplicates(response['choices'][0]['text'])
|
84 |
except Exception as e:
|
85 |
print(f"Error generating model response: {e}")
|
86 |
-
return f"Error: {e}"
|
87 |
-
|
88 |
-
def remove_repetitive_responses(responses):
|
89 |
-
unique_responses = {}
|
90 |
-
for response in responses:
|
91 |
-
if response['model'] not in unique_responses and response['response']: #added check for empty responses
|
92 |
-
unique_responses[response['model']] = response['response']
|
93 |
-
return unique_responses
|
94 |
|
95 |
|
96 |
-
|
97 |
-
|
|
|
98 |
with ThreadPoolExecutor() as executor:
|
99 |
futures = [
|
100 |
executor.submit(generate_model_response, model, inputs)
|
101 |
-
for model in
|
102 |
]
|
103 |
-
responses = [{'model': model_name, 'response': future.result()} for model_name, future in zip(
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
unique_responses = remove_repetitive_responses(responses)
|
106 |
formatted_response = ""
|
107 |
for model, response in unique_responses.items():
|
108 |
formatted_response += f"**{model}:**\n{response}\n\n"
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
iface = gr.Interface(
|
115 |
-
fn=process_message,
|
116 |
-
inputs=[
|
117 |
-
gr.Textbox(lines=2, placeholder="Enter your message here..."),
|
118 |
-
gr.State([])
|
119 |
-
],
|
120 |
-
outputs=[
|
121 |
-
gr.Chatbot(),
|
122 |
-
gr.Textbox(label="cURL command", visible=False) #Hidden cURL command
|
123 |
-
],
|
124 |
-
title="Multi-Model LLM API",
|
125 |
-
description="Enter a message and get responses from multiple LLMs.",
|
126 |
-
)
|
127 |
|
128 |
if __name__ == "__main__":
|
129 |
port = int(os.environ.get("PORT", 7860))
|
130 |
-
|
|
|
2 |
from llama_cpp import Llama
|
3 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
4 |
import re
|
5 |
+
import uvicorn
|
6 |
+
from fastapi import FastAPI, HTTPException
|
7 |
+
from fastapi.middleware.cors import CORSMiddleware
|
8 |
import os
|
9 |
from dotenv import load_dotenv
|
10 |
import json
|
|
|
13 |
|
14 |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
15 |
|
16 |
+
app = FastAPI()
|
17 |
+
|
18 |
+
origins = ["*"] # Adjust as needed for production
|
19 |
+
|
20 |
+
app.add_middleware(
|
21 |
+
CORSMiddleware,
|
22 |
+
allow_origins=origins,
|
23 |
+
allow_credentials=True,
|
24 |
+
allow_methods=["*"],
|
25 |
+
allow_headers=["*"],
|
26 |
+
)
|
27 |
+
|
|
|
28 |
|
29 |
model_configs = [
|
30 |
{"repo_id": "Hjgugugjhuhjggg/mergekit-ties-tzamfyy-Q2_K-GGUF", "filename": "mergekit-ties-tzamfyy-q2_k.gguf", "name": "my_model"}
|
31 |
+
# Add more models here
|
32 |
]
|
33 |
|
34 |
+
models = {}
|
35 |
+
def load_model(model_config):
|
36 |
+
if model_config['name'] not in models:
|
37 |
+
try:
|
38 |
+
model = Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename'], use_auth_token=HUGGINGFACE_TOKEN)
|
39 |
+
models[model_config['name']] = model
|
40 |
+
print(f"Model '{model_config['name']}' loaded successfully.")
|
41 |
+
return model
|
42 |
+
except Exception as e:
|
43 |
+
print(f"Error loading model {model_config['name']}: {e}")
|
44 |
+
return None
|
45 |
|
46 |
+
for config in model_configs:
|
47 |
+
load_model(config) #Load models on startup
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
class ChatRequest(BaseModel):
|
52 |
message: str
|
|
|
59 |
unique_lines = []
|
60 |
seen_lines = set()
|
61 |
for line in lines:
|
62 |
+
line = line.strip()
|
63 |
if line and line not in seen_lines:
|
64 |
unique_lines.append(line)
|
65 |
seen_lines.add(line)
|
|
|
67 |
|
68 |
def generate_model_response(model, inputs):
|
69 |
try:
|
70 |
+
if model is None:
|
71 |
return ""
|
72 |
response = model(inputs)
|
73 |
return remove_duplicates(response['choices'][0]['text'])
|
74 |
except Exception as e:
|
75 |
print(f"Error generating model response: {e}")
|
76 |
+
return f"Error: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
|
79 |
+
@app.post("/generate")
|
80 |
+
async def generate(request: ChatRequest):
|
81 |
+
inputs = normalize_input(request.message)
|
82 |
with ThreadPoolExecutor() as executor:
|
83 |
futures = [
|
84 |
executor.submit(generate_model_response, model, inputs)
|
85 |
+
for model in models.values()
|
86 |
]
|
87 |
+
responses = [{'model': model_name, 'response': future.result()} for model_name, future in zip(models.keys(), as_completed(futures))]
|
88 |
+
|
89 |
+
unique_responses = {}
|
90 |
+
for response in responses:
|
91 |
+
if response['model'] not in unique_responses and response['response']:
|
92 |
+
unique_responses[response['model']] = response['response']
|
93 |
|
|
|
94 |
formatted_response = ""
|
95 |
for model, response in unique_responses.items():
|
96 |
formatted_response += f"**{model}:**\n{response}\n\n"
|
97 |
|
98 |
+
return {"response": formatted_response}
|
99 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
if __name__ == "__main__":
|
102 |
port = int(os.environ.get("PORT", 7860))
|
103 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|