code
Browse files
app.py
CHANGED
@@ -1,56 +1,14 @@
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
-
import
|
4 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
5 |
import os
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
from safetensors.torch import load_file, save_file
|
11 |
-
|
12 |
-
@spaces.GPU
|
13 |
-
def merge_safetensors(input_dir, output_file):
|
14 |
-
# 获取所有分片文件
|
15 |
-
files = sorted([f for f in os.listdir(input_dir) if f.startswith('model-') and f.endswith('.safetensors')])
|
16 |
-
|
17 |
-
# 合并所有张量
|
18 |
-
merged_state_dict = {}
|
19 |
-
for file in files:
|
20 |
-
file_path = os.path.join(input_dir, file)
|
21 |
-
print(f"Loading {file}...")
|
22 |
-
state_dict = load_file(file_path)
|
23 |
-
merged_state_dict.update(state_dict)
|
24 |
-
|
25 |
-
# 保存合并后的文件
|
26 |
-
print(f"Saving merged model to {output_file}...")
|
27 |
-
save_file(merged_state_dict, output_file)
|
28 |
-
print("Done!")
|
29 |
-
|
30 |
-
# 使用示例
|
31 |
-
input_dir = "./phi-4/phi-4" # 包含分片文件的目录
|
32 |
-
output_file = "./phi-4/phi-4/model.safetensors" # 合并后的文件路径
|
33 |
-
|
34 |
-
if not os.path.exists(output_file):
|
35 |
-
merge_safetensors(input_dir, output_file)
|
36 |
-
|
37 |
-
# 加载 phi-4 模型和 tokenizer
|
38 |
-
torch.random.manual_seed(0)
|
39 |
-
|
40 |
-
model = AutoModelForCausalLM.from_pretrained(
|
41 |
-
"./phi-4/phi-4", # 模型路径
|
42 |
-
device_map="cuda", # 使用 GPU
|
43 |
-
torch_dtype="auto", # 自动选择数据类型
|
44 |
-
trust_remote_code=True, # 允许远程代码加载
|
45 |
-
)
|
46 |
-
tokenizer = AutoTokenizer.from_pretrained("./phi-4/phi-4")
|
47 |
-
|
48 |
-
# 设置 pipeline
|
49 |
-
|
50 |
-
pipe = pipeline(
|
51 |
"text-generation",
|
52 |
-
model=
|
53 |
-
|
|
|
54 |
)
|
55 |
|
56 |
# 响应函数
|
@@ -72,21 +30,15 @@ def respond(
|
|
72 |
messages.append({"role": "assistant", "content": assistant_msg})
|
73 |
messages.append({"role": "user", "content": message})
|
74 |
|
75 |
-
# 将消息转换为字符串格式(适用于 text-generation)
|
76 |
-
input_text = "\n".join(
|
77 |
-
f"{msg['role']}: {msg['content']}" for msg in messages
|
78 |
-
)
|
79 |
-
|
80 |
# 生成响应
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
response = output[0]["generated_text"]
|
90 |
|
91 |
# 返回流式响应
|
92 |
for token in response:
|
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
+
import transformers
|
|
|
4 |
import os
|
5 |
|
6 |
+
# 初始化pipeline
|
7 |
+
pipeline = transformers.pipeline(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
"text-generation",
|
9 |
+
model="microsoft/phi-4",
|
10 |
+
model_kwargs={"torch_dtype": "auto"},
|
11 |
+
device_map="auto",
|
12 |
)
|
13 |
|
14 |
# 响应函数
|
|
|
30 |
messages.append({"role": "assistant", "content": assistant_msg})
|
31 |
messages.append({"role": "user", "content": message})
|
32 |
|
|
|
|
|
|
|
|
|
|
|
33 |
# 生成响应
|
34 |
+
outputs = pipeline(
|
35 |
+
messages,
|
36 |
+
max_new_tokens=max_tokens,
|
37 |
+
temperature=temperature,
|
38 |
+
top_p=top_p,
|
39 |
+
do_sample=(temperature > 0),
|
40 |
+
)
|
41 |
+
response = outputs[0]["generated_text"]
|
|
|
42 |
|
43 |
# 返回流式响应
|
44 |
for token in response:
|