File size: 37,194 Bytes
e17c9f2
 
 
a6a5155
e17c9f2
 
 
 
 
 
02069d7
e17c9f2
a6a5155
 
 
 
 
 
 
 
 
 
 
 
 
 
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02069d7
e17c9f2
 
02069d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e17c9f2
 
 
 
 
 
 
 
02069d7
e17c9f2
 
 
02069d7
e17c9f2
 
 
 
 
 
 
 
02069d7
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
02069d7
 
 
e17c9f2
02069d7
e17c9f2
 
02069d7
 
 
 
 
e17c9f2
02069d7
 
 
 
 
 
e17c9f2
 
02069d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e17c9f2
 
 
 
 
 
 
02069d7
 
 
e17c9f2
02069d7
e17c9f2
 
02069d7
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02069d7
e17c9f2
02069d7
 
 
e17c9f2
02069d7
e17c9f2
02069d7
 
 
 
 
 
 
 
 
 
 
e17c9f2
 
 
 
 
 
 
 
02069d7
 
 
e17c9f2
02069d7
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02069d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e17c9f2
 
 
 
 
 
 
 
02069d7
 
 
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
02069d7
 
 
 
 
 
e17c9f2
 
 
 
 
02069d7
 
 
 
 
 
 
 
 
e17c9f2
02069d7
 
 
e17c9f2
 
 
 
 
 
 
02069d7
 
 
 
 
 
 
 
e17c9f2
02069d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e17c9f2
 
 
02069d7
e17c9f2
 
02069d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e17c9f2
02069d7
 
 
 
 
e17c9f2
02069d7
e17c9f2
 
 
 
02069d7
e17c9f2
 
02069d7
 
 
 
 
 
 
 
e17c9f2
02069d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e17c9f2
 
02069d7
 
e17c9f2
 
02069d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e17c9f2
02069d7
 
 
 
 
e17c9f2
02069d7
 
 
e17c9f2
 
 
 
02069d7
e17c9f2
 
02069d7
 
 
 
 
 
 
 
e17c9f2
02069d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e17c9f2
 
02069d7
 
e17c9f2
 
02069d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e17c9f2
02069d7
 
 
 
 
e17c9f2
02069d7
 
 
e17c9f2
 
 
 
02069d7
e17c9f2
 
02069d7
 
 
 
 
 
 
 
e17c9f2
02069d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e17c9f2
 
02069d7
 
e17c9f2
 
02069d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e17c9f2
02069d7
 
 
 
 
 
e17c9f2
 
 
 
 
 
 
 
 
 
02069d7
 
 
 
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02069d7
e17c9f2
 
 
 
 
 
 
 
 
 
 
02069d7
 
 
 
 
e17c9f2
 
02069d7
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02069d7
e17c9f2
 
 
 
 
 
 
02069d7
 
 
 
e17c9f2
 
02069d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e17c9f2
 
 
 
 
 
 
 
 
02069d7
e17c9f2
02069d7
e17c9f2
02069d7
 
 
e17c9f2
 
 
 
 
 
 
 
 
02069d7
e17c9f2
 
 
 
 
02069d7
 
 
 
 
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
02069d7
 
 
e17c9f2
 
02069d7
 
e17c9f2
02069d7
 
 
e17c9f2
 
 
 
 
 
 
 
 
 
02069d7
 
e17c9f2
 
 
 
 
 
 
 
 
 
 
a6a5155
02069d7
a6a5155
02069d7
 
 
 
 
e17c9f2
 
 
02069d7
e17c9f2
 
 
 
 
 
 
02069d7
 
 
 
 
 
 
 
 
 
 
 
 
 
e17c9f2
02069d7
 
 
 
 
 
 
 
 
e17c9f2
 
 
 
 
 
 
 
 
02069d7
 
 
 
 
 
 
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
02069d7
 
 
e17c9f2
02069d7
e17c9f2
 
 
 
 
 
 
 
02069d7
 
 
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6a5155
e17c9f2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
import os
import re
import json
import torch
from tqdm import tqdm
from neo4j import GraphDatabase
from collections import defaultdict, deque
from py2neo import Graph, Node, Relationship
from loguru import logger


class PaperClient:
    _instance = None
    _initialized = False

    def __new__(cls, *args, **kwargs):
        if cls._instance is None:
            cls._instance = super(PaperClient, cls).__new__(cls)
        return cls._instance

    def __init__(self) -> None:
        if not self._initialized:
            self.driver = self.get_neo4j_driver()
            self.teb_model = None
            self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
            PaperClient._initialized = True

    def get_neo4j_driver(self):
        URI = os.environ["NEO4J_URL"]
        NEO4J_USERNAME = os.environ["NEO4J_USERNAME"]
        NEO4J_PASSWD = os.environ["NEO4J_PASSWD"]
        AUTH = (NEO4J_USERNAME, NEO4J_PASSWD)
        driver = GraphDatabase.driver(URI, auth=AUTH)
        return driver

    def update_paper_from_client(self, paper):
        paper_id = paper["hash_id"]
        if paper_id is None:
            return None
        query = f"""
            MATCH (p:Paper {{hash_id: {paper_id}}})
            RETURN p
            """
        with self.driver.session() as session:
            result = session.execute_read(lambda tx: tx.run(query).data())
        if result:
            paper_from_client = result[0]["p"]
            if paper_from_client is not None:
                paper.update(paper_from_client)

    def update_papers_from_client(self, paper_id_list):
        query = """
            UNWIND $papers AS paper
            MATCH (p:Paper {hash_id: paper.hash_id})
            RETURN p as result
        """
        paper_data = [
            {
                "hash_id": hash_id,
            }
            for hash_id in paper_id_list
        ]
        with self.driver.session() as session:
            result = session.execute_read(
                lambda tx: tx.run(query, papers=paper_data).data()
            )
        return [r["result"] for r in result]

    def get_paper_attribute(self, paper_id, attribute_name):
        query = f"""
            MATCH (p:Paper {{hash_id: {paper_id}}})
            RETURN p.{attribute_name} AS attributeValue
            """
        with self.driver.session() as session:
            result = session.execute_read(lambda tx: tx.run(query).data())
        if result:
            return result[0]["attributeValue"]
        else:
            logger.error(f"paper id {paper_id} get {attribute_name} failed.")
            return None

    def get_paper_by_attribute(self, attribute_name, anttribute_value):
        query = f"""
            MATCH (p:Paper {{{attribute_name}: '{anttribute_value}'}})
            RETURN p
            """
        with self.driver.session() as session:
            result = session.execute_read(lambda tx: tx.run(query).data())
        if result:
            return result[0]["p"]
        else:
            return None

    def get_paper_from_term(self, entity):
        if entity is None:
            return None
        query = """
            MATCH (p:Paper)
            WHERE p.entity = $entity
            RETURN p.hash_id as hash_id
            """
        with self.driver.session() as session:
            result = session.execute_read(
                lambda tx: tx.run(query, entity=entity).data()
            )
        if result:
            return [record["hash_id"] for record in result]
        else:
            return []

    def find_related_entities_by_entity_list(
        self, entity_names, n=1, k=3, relation_name="related"
    ):
        related_entities = set()
        query = """
            UNWIND $batch_entities AS entity_name
            MATCH (e1:Entity {name: entity_name})-[:RELATED_TO]->(p:Paper)<-[:RELATED_TO]-(e2:Entity)
            WHERE e1 <> e2
            WITH e1, e2, COUNT(p) AS common_papers, entity_name
            WHERE common_papers > $k
            RETURN e2.name AS entities, entity_name AS source_entity, common_papers
        """
        with self.driver.session() as session:
            result = session.execute_read(
                lambda tx: tx.run(query, batch_entities=entity_names, k=k).data()
            )
        for record in result:
            entity = record["entities"]
            related_entities.add(entity)
        return list(related_entities)

    def find_entities_by_paper_list(self, hash_ids: list):
        query = """
            UNWIND $hash_ids AS hash_id
            MATCH (e:Entity)-[:RELATED_TO]->(p:Paper {hash_id: hash_id})
            RETURN hash_id, e.name AS entity_name
        """
        with self.driver.session() as session:
            result = session.execute_read(
                lambda tx: tx.run(query, hash_ids=hash_ids).data()
            )
        # 按照每个 hash_id 分组实体
        entity_list = []
        for record in result:
            entity_list.append(record["entity_name"])
        return entity_list

    def find_paper_by_entity(self, entity_name):
        query = """
            MATCH (e1:Entity {name: $entity_name})-[:RELATED_TO]->(p:Paper)
            RETURN p.hash_id AS hash_id
        """
        with self.driver.session() as session:
            result = session.execute_read(
                lambda tx: tx.run(query, entity_name=entity_name).data()
            )
        if result:
            return [record["hash_id"] for record in result]
        else:
            return []

    # TODO: @云翔
    # 增加通过entity返回包含entity语句的功能
    def find_sentence_by_entity(self, entity_name):
        # Return: list(str)
        return []

    def find_sentences_by_entity(self, entity_name):
        query = """
        MATCH (e:Entity {name: $entity_name})-[:RELATED_TO]->(p:Paper)
        WHERE p.abstract CONTAINS $entity_name OR
          p.introduction CONTAINS $entity_name OR
          p.methodology CONTAINS $entity_name
        RETURN p.abstract AS abstract, 
            p.introduction AS introduction, 
            p.methodology AS methodology, 
            p.hash_id AS hash_id
        """
        sentences = []

        with self.driver.session() as session:
            result = session.execute_read(
                lambda tx: tx.run(query, entity_name=entity_name).data()
            )
        for record in result:
            for key in ["abstract", "introduction", "methodology"]:
                if record[key]:
                    filtered_sentences = [
                        sentence.strip() + "."
                        for sentence in record[key].split(".")
                        if entity_name in sentence
                    ]
                    sentences.extend(
                        [
                            f"{record['hash_id']}: {sentence}"
                            for sentence in filtered_sentences
                        ]
                    )

        return sentences

    def select_paper(self, venue_name, year):
        query = """
            MATCH (n:Paper) where n.year=$year and n.venue_name=$venue_name return n
        """
        with self.driver.session() as session:
            result = session.execute_read(
                lambda tx: tx.run(query, year=year, venue_name=venue_name).data()
            )
        if result:
            return [record["n"] for record in result]
        else:
            return []

    def add_paper_node(self, paper: dict):
        if "summary" not in paper.keys():
            paper["summary"] = None
        if "abstract" not in paper.keys():
            paper["abstract"] = None
        if "introduction" not in paper.keys():
            paper["introduction"] = None
        if "reference" not in paper.keys():
            paper["reference"] = None
        if "cite" not in paper.keys():
            paper["cite"] = None
        if "motivation" not in paper.keys():
            paper["motivation"] = None
        if "contribution" not in paper.keys():
            paper["contribution"] = None
        if "methodology" not in paper.keys():
            paper["methodology"] = None
        if "ground_truth" not in paper.keys():
            paper["ground_truth"] = None
        if "reference_filter" not in paper.keys():
            paper["reference_filter"] = None
        if "conclusions" not in paper.keys():
            paper["conclusions"] = None
        query = """
            MERGE (p:Paper {hash_id: $hash_id})
            ON CREATE SET p.venue_name = $venue_name, p.year = $year, p.title = $title, p.pdf_url = $pdf_url, p.abstract = $abstract, p.introduction = $introduction, p.reference = $reference, p.summary = $summary, p.motivation = $motivation, p.contribution = $contribution, p.methodology = $methodology, p.ground_truth = $ground_truth, p.reference_filter = $reference_filter, p.conclusions = $conclusions
            ON MATCH SET p.venue_name = $venue_name, p.year = $year, p.title = $title, p.pdf_url = $pdf_url, p.abstract = $abstract, p.introduction = $introduction, p.reference = $reference, p.summary = $summary, p.motivation = $motivation, p.contribution = $contribution, p.methodology = $methodology, p.ground_truth = $ground_truth, p.reference_filter = $reference_filter, p.conclusions = $conclusions
            RETURN p
            """
        with self.driver.session() as session:
            result = session.execute_write(
                lambda tx: tx.run(
                    query,
                    hash_id=paper["hash_id"],
                    venue_name=paper["venue_name"],
                    year=paper["year"],
                    title=paper["title"],
                    pdf_url=paper["pdf_url"],
                    abstract=paper["abstract"],
                    introduction=paper["introduction"],
                    reference=paper["reference"],
                    summary=paper["summary"],
                    motivation=paper["motivation"],
                    contribution=paper["contribution"],
                    methodology=paper["methodology"],
                    ground_truth=paper["ground_truth"],
                    reference_filter=paper["reference_filter"],
                    conclusions=paper["conclusions"],
                ).data()
            )

    def check_entity_node_count(self, hash_id: int):
        query_check_count = """
            MATCH (e:Entity)-[:RELATED_TO]->(p:Paper {hash_id: $hash_id})
            RETURN count(e) AS entity_count
        """
        with self.driver.session() as session:
            # Check the number of related entities
            result = session.execute_read(
                lambda tx: tx.run(query_check_count, hash_id=hash_id).data()
            )
            if result[0]["entity_count"] > 3:
                return False
        return True

    def add_entity_node(self, hash_id: int, entities: list):
        query = """
            MERGE (e:Entity {name: $entity_name})
            WITH e
            MATCH (p:Paper {hash_id: $hash_id})
            MERGE (e)-[:RELATED_TO]->(p)
            RETURN e, p
        """
        with self.driver.session() as session:
            for entity_name in entities:
                result = session.execute_write(
                    lambda tx: tx.run(
                        query, entity_name=entity_name, hash_id=hash_id
                    ).data()
                )

    def add_paper_citation(self, paper: dict):
        query = """
            MERGE (p:Paper {hash_id: $hash_id}) ON MATCH SET p.cite_id_list = $cite_id_list, p.entities = $entities, p.all_cite_id_list = $all_cite_id_list
            """
        with self.driver.session() as session:
            result = session.execute_write(
                lambda tx: tx.run(
                    query,
                    hash_id=paper["hash_id"],
                    cite_id_list=paper["cite_id_list"],
                    entities=paper["entities"],
                    all_cite_id_list=paper["all_cite_id_list"],
                ).data()
            )

    def add_paper_abstract_embedding(
        self, embedding_model, hash_id=None, batch_size=512
    ):
        if hash_id is not None:
            query = """
            MATCH (p:Paper {hash_id: $hash_id})
            WHERE p.abstract IS NOT NULL
            RETURN p.abstract AS context, p.hash_id AS hash_id, p.title AS title
            """
            with self.driver.session() as session:
                results = session.execute_write(
                    lambda tx: tx.run(query, hash_id=hash_id).data()
                )
            contexts = [result["title"] + result["context"] for result in results]
            paper_ids = [result["hash_id"] for result in results]
            context_embeddings = embedding_model.encode(
                contexts, convert_to_tensor=True, device=self.device
            )
            query = """
                MERGE (p:Paper {hash_id: $hash_id})
                ON CREATE SET p.abstract_embedding = $embedding
                ON MATCH SET p.abstract_embedding = $embedding
            """
            for idx, hash_id in tqdm(enumerate(paper_ids)):
                embedding = (
                    context_embeddings[idx].detach().cpu().numpy().flatten().tolist()
                )
                with self.driver.session() as session:
                    results = session.execute_write(
                        lambda tx: tx.run(
                            query, hash_id=hash_id, embedding=embedding
                        ).data()
                    )
            return
        offset = 0
        while True:
            query = f"""
            MATCH (p:Paper)
            WHERE p.abstract IS NOT NULL
            RETURN p.abstract AS context, p.hash_id AS hash_id, p.title AS title
            SKIP $offset LIMIT $batch_size
            """
            with self.driver.session() as session:
                results = session.execute_write(
                    lambda tx: tx.run(
                        query, offset=offset, batch_size=batch_size
                    ).data()
                )
            if not results:
                break
            contexts = [result["title"] + result["context"] for result in results]
            paper_ids = [result["hash_id"] for result in results]
            context_embeddings = embedding_model.encode(
                contexts,
                batch_size=batch_size,
                convert_to_tensor=True,
                device=self.device,
            )
            write_query = """
            UNWIND $data AS row
            MERGE (p:Paper {hash_id: row.hash_id})
            ON CREATE SET p.abstract_embedding = row.embedding
            ON MATCH SET p.abstract_embedding = row.embedding
            """
            data_to_write = []
            for idx, hash_id in enumerate(paper_ids):
                embedding = (
                    context_embeddings[idx].detach().cpu().numpy().flatten().tolist()
                )
                data_to_write.append({"hash_id": hash_id, "embedding": embedding})
            with self.driver.session() as session:
                session.execute_write(
                    lambda tx: tx.run(write_query, data=data_to_write)
                )
            offset += batch_size
            logger.info(f"== Processed batch starting at offset {offset} ==")

    def add_paper_bg_embedding(self, embedding_model, hash_id=None, batch_size=512):
        if hash_id is not None:
            query = """
            MATCH (p:Paper {hash_id: $hash_id})
            WHERE p.motivation IS NOT NULL
            RETURN p.motivation AS context, p.hash_id AS hash_id, p.title AS title
            """
            with self.driver.session() as session:
                results = session.execute_write(
                    lambda tx: tx.run(query, hash_id=hash_id).data()
                )
            contexts = [result["context"] for result in results]
            paper_ids = [result["hash_id"] for result in results]
            context_embeddings = embedding_model.encode(
                contexts, convert_to_tensor=True, device=self.device
            )
            query = """
                MERGE (p:Paper {hash_id: $hash_id})
                ON CREATE SET p.motivation_embedding = $embedding
                ON MATCH SET p.motivation_embedding = $embedding
            """
            for idx, hash_id in tqdm(enumerate(paper_ids)):
                embedding = (
                    context_embeddings[idx].detach().cpu().numpy().flatten().tolist()
                )
                with self.driver.session() as session:
                    results = session.execute_write(
                        lambda tx: tx.run(
                            query, hash_id=hash_id, embedding=embedding
                        ).data()
                    )
            return
        offset = 0
        while True:
            query = f"""
            MATCH (p:Paper)
            WHERE p.motivation IS NOT NULL
            RETURN p.motivation AS context, p.hash_id AS hash_id, p.title AS title
            SKIP $offset LIMIT $batch_size
            """
            with self.driver.session() as session:
                results = session.execute_write(
                    lambda tx: tx.run(
                        query, offset=offset, batch_size=batch_size
                    ).data()
                )
            if not results:
                break
            contexts = [result["title"] + result["context"] for result in results]
            paper_ids = [result["hash_id"] for result in results]
            context_embeddings = embedding_model.encode(
                contexts,
                batch_size=batch_size,
                convert_to_tensor=True,
                device=self.device,
            )
            write_query = """
            UNWIND $data AS row
            MERGE (p:Paper {hash_id: row.hash_id})
            ON CREATE SET p.motivation_embedding = row.embedding
            ON MATCH SET p.motivation_embedding = row.embedding
            """
            data_to_write = []
            for idx, hash_id in enumerate(paper_ids):
                embedding = (
                    context_embeddings[idx].detach().cpu().numpy().flatten().tolist()
                )
                data_to_write.append({"hash_id": hash_id, "embedding": embedding})
            with self.driver.session() as session:
                session.execute_write(
                    lambda tx: tx.run(write_query, data=data_to_write)
                )
            offset += batch_size
            logger.info(f"== Processed batch starting at offset {offset} ==")

    def add_paper_contribution_embedding(
        self, embedding_model, hash_id=None, batch_size=512
    ):
        if hash_id is not None:
            query = """
            MATCH (p:Paper {hash_id: $hash_id})
            WHERE p.contribution IS NOT NULL
            RETURN p.contribution AS context, p.hash_id AS hash_id, p.title AS title
            """
            with self.driver.session() as session:
                results = session.execute_write(
                    lambda tx: tx.run(query, hash_id=hash_id).data()
                )
            contexts = [result["context"] for result in results]
            paper_ids = [result["hash_id"] for result in results]
            context_embeddings = embedding_model.encode(
                contexts, convert_to_tensor=True, device=self.device
            )
            query = """
                MERGE (p:Paper {hash_id: $hash_id})
                ON CREATE SET p.contribution_embedding = $embedding
                ON MATCH SET p.contribution_embedding = $embedding
            """
            for idx, hash_id in tqdm(enumerate(paper_ids)):
                embedding = (
                    context_embeddings[idx].detach().cpu().numpy().flatten().tolist()
                )
                with self.driver.session() as session:
                    results = session.execute_write(
                        lambda tx: tx.run(
                            query, hash_id=hash_id, embedding=embedding
                        ).data()
                    )
            return
        offset = 0
        while True:
            query = f"""
            MATCH (p:Paper)
            WHERE p.contribution IS NOT NULL
            RETURN p.contribution AS context, p.hash_id AS hash_id, p.title AS title
            SKIP $offset LIMIT $batch_size
            """
            with self.driver.session() as session:
                results = session.execute_write(
                    lambda tx: tx.run(
                        query, offset=offset, batch_size=batch_size
                    ).data()
                )
            if not results:
                break
            contexts = [result["context"] for result in results]
            paper_ids = [result["hash_id"] for result in results]
            context_embeddings = embedding_model.encode(
                contexts,
                batch_size=batch_size,
                convert_to_tensor=True,
                device=self.device,
            )
            write_query = """
            UNWIND $data AS row
            MERGE (p:Paper {hash_id: row.hash_id})
            ON CREATE SET p.contribution_embedding = row.embedding
            ON MATCH SET p.contribution_embedding = row.embedding
            """
            data_to_write = []
            for idx, hash_id in enumerate(paper_ids):
                embedding = (
                    context_embeddings[idx].detach().cpu().numpy().flatten().tolist()
                )
                data_to_write.append({"hash_id": hash_id, "embedding": embedding})
            with self.driver.session() as session:
                session.execute_write(
                    lambda tx: tx.run(write_query, data=data_to_write)
                )
            offset += batch_size
            logger.info(f"== Processed batch starting at offset {offset} ==")

    def add_paper_summary_embedding(
        self, embedding_model, hash_id=None, batch_size=512
    ):
        if hash_id is not None:
            query = """
            MATCH (p:Paper {hash_id: $hash_id})
            WHERE p.summary IS NOT NULL
            RETURN p.summary AS context, p.hash_id AS hash_id, p.title AS title
            """
            with self.driver.session() as session:
                results = session.execute_write(
                    lambda tx: tx.run(query, hash_id=hash_id).data()
                )
            contexts = [result["context"] for result in results]
            paper_ids = [result["hash_id"] for result in results]
            context_embeddings = embedding_model.encode(
                contexts, convert_to_tensor=True, device=self.device
            )
            query = """
                MERGE (p:Paper {hash_id: $hash_id})
                ON CREATE SET p.summary_embedding = $embedding
                ON MATCH SET p.summary_embedding = $embedding
            """
            for idx, hash_id in tqdm(enumerate(paper_ids)):
                embedding = (
                    context_embeddings[idx].detach().cpu().numpy().flatten().tolist()
                )
                with self.driver.session() as session:
                    results = session.execute_write(
                        lambda tx: tx.run(
                            query, hash_id=hash_id, embedding=embedding
                        ).data()
                    )
            return
        offset = 0
        while True:
            query = f"""
            MATCH (p:Paper)
            WHERE p.summary IS NOT NULL
            RETURN p.summary AS context, p.hash_id AS hash_id, p.title AS title
            SKIP $offset LIMIT $batch_size
            """
            with self.driver.session() as session:
                results = session.execute_write(
                    lambda tx: tx.run(
                        query, offset=offset, batch_size=batch_size
                    ).data()
                )
            if not results:
                break
            contexts = [result["context"] for result in results]
            paper_ids = [result["hash_id"] for result in results]
            context_embeddings = embedding_model.encode(
                contexts,
                batch_size=batch_size,
                convert_to_tensor=True,
                device=self.device,
            )
            write_query = """
            UNWIND $data AS row
            MERGE (p:Paper {hash_id: row.hash_id})
            ON CREATE SET p.summary_embedding = row.embedding
            ON MATCH SET p.summary_embedding = row.embedding
            """
            data_to_write = []
            for idx, hash_id in enumerate(paper_ids):
                embedding = (
                    context_embeddings[idx].detach().cpu().numpy().flatten().tolist()
                )
                data_to_write.append({"hash_id": hash_id, "embedding": embedding})
            with self.driver.session() as session:
                session.execute_write(
                    lambda tx: tx.run(write_query, data=data_to_write)
                )
            offset += batch_size
            logger.info(f"== Processed batch starting at offset {offset} ==")

    def cosine_similarity_search(self, embedding, k=1, type_name="embedding"):
        query = f"""
            MATCH (paper:Paper)
            WITH paper,
                vector.similarity.cosine(paper.{type_name}, $embedding) AS score
            WHERE score > 0
            RETURN paper, score
            ORDER BY score DESC LIMIT {k}
            """
        with self.driver.session() as session:
            results = session.execute_read(
                lambda tx: tx.run(query, embedding=embedding).data()
            )
        related_paper = []
        for result in results:
            related_paper.append(result["paper"]["hash_id"])
        return related_paper

    def create_vector_index(self):
        """
        适用于Paper节点
        针对Paper节点上的是属性 embedding 进行索引
        索引向量的维度为384
        适用余弦相似度作为计算相似度的方法
        """
        query = """
            CREATE VECTOR INDEX `paper-embeddings`
            FOR (n:Paper) ON (n.embedding)
            OPTIONS {indexConfig: {
            `vector.dimensions`: 384,
            `vector.similarity_function`: 'cosine'
            }}
            """
        with self.driver.session() as session:
            session.execute_write(lambda tx: tx.run(query).data())

    def filter_paper_id_list(self, paper_id_list, year="2024"):
        if not paper_id_list:
            return []
        # WHERE p.year < "2024" AND p.venue_name <> "acl"
        query = """
            UNWIND $paper_id_list AS hash_id
            MATCH (p:Paper {hash_id: hash_id})
            WHERE p.year < $year
            RETURN p.hash_id AS hash_id
        """
        with self.driver.session() as session:
            result = session.execute_read(
                lambda tx: tx.run(query, paper_id_list=paper_id_list, year=year).data()
            )

        existing_paper_ids = [record["hash_id"] for record in result]
        existing_paper_ids = list(set(existing_paper_ids))
        return existing_paper_ids

    def check_index_exists(self):
        query = "SHOW INDEXES"
        with self.driver.session() as session:
            result = session.execute_read(lambda tx: tx.run(query).data())
        for record in result:
            if record["name"] == "paper-embeddings":
                return True
        return False

    def clear_database(self):
        query = """
        MATCH (n)
        DETACH DELETE n
        """
        with self.driver.session() as session:
            session.execute_write(lambda tx: tx.run(query).data())

    def get_entity_related_paper_num(self, entity_name):
        query = """
            MATCH (e:Entity {name: $entity_name})-[:RELATED_TO]->(p:Paper)
            WITH COUNT(p) AS PaperCount
            RETURN PaperCount
        """
        with self.driver.session() as session:
            result = session.execute_read(
                lambda tx: tx.run(query, entity_name=entity_name).data()
            )
        paper_num = result[0]["PaperCount"]
        return paper_num

    def get_entities_related_paper_num(self, entity_names):
        query = """
            UNWIND $entity_names AS entity_name
            MATCH (e:Entity {name: entity_name})-[:RELATED_TO]->(p:Paper)
            WITH entity_name, COUNT(p) AS PaperCount
            RETURN entity_name, PaperCount
        """

        with self.driver.session() as session:
            result = session.execute_read(
                lambda tx: tx.run(query, entity_names=entity_names).data()
            )
        # 将查询结果转化为字典形式:实体名称 -> 论文数量
        entity_paper_count = {
            record["entity_name"]: record["PaperCount"] for record in result
        }
        return entity_paper_count

    def get_entity_text(self):
        query = """
            MATCH (e:Entity)-[:RELATED_TO]->(p:Paper)
            WHERE p.venue_name = $venue_name and p.year = $year
            WITH p, collect(e.name) AS entity_names
            RETURN p, reduce(text = '', name IN entity_names | text + ' ' + name) AS entity_text
        """
        with self.driver.session() as session:
            result = session.execute_read(lambda tx: tx.run(query).data())
        text_list = [record["entity_text"] for record in result]
        return text_list

    def get_entity_combinations(self, venue_name, year):
        def process_paper_relationships(
            session, entity_name_1, entity_name_2, abstract
        ):
            if entity_name_2 < entity_name_1:
                entity_name_1, entity_name_2 = entity_name_2, entity_name_1
            query = """
                MATCH (e1:Entity {name: $entity_name_1})
                MATCH (e2:Entity {name: $entity_name_2})
                MERGE (e1)-[r:CONNECT]->(e2)
                ON CREATE SET r.strength = 1
                ON MATCH SET r.strength = r.strength + 1
            """
            sentences = re.split(r"(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s", abstract)
            for sentence in sentences:
                sentence = sentence.lower()
                if entity_name_1 in sentence and entity_name_2 in sentence:
                    # 如果两个实体在同一句话中出现过,则创建或更新 CONNECT 关系
                    session.execute_write(
                        lambda tx: tx.run(
                            query,
                            entity_name_1=entity_name_1,
                            entity_name_2=entity_name_2,
                        ).data()
                    )
                    # logger.debug(f"CONNECT relation created or updated between {entity_name_1} and {entity_name_2} for Paper ID {paper_id}")
                    break  # 如果找到一次出现就可以退出循环

        query = """
            MATCH (e:Entity)-[:RELATED_TO]->(p:Paper)
            WHERE p.venue_name=$venue_name and p.year=$year
            WITH p, collect(e) as entities
            UNWIND range(0, size(entities)-2) as i
            UNWIND range(i+1, size(entities)-1) as j
            RETURN p.hash_id AS hash_id, entities[i].name AS entity_name_1, entities[j].name AS entity_name_2
        """
        with self.driver.session() as session:
            result = session.execute_read(
                lambda tx: tx.run(query, venue_name=venue_name, year=year).data()
            )
            for record in tqdm(result):
                paper_id = record["hash_id"]
                entity_name_1 = record["entity_name_1"]
                entity_name_2 = record["entity_name_2"]
                abstract = self.get_paper_attribute(paper_id, "abstract")
                process_paper_relationships(
                    session, entity_name_1, entity_name_2, abstract
                )

    def build_citemap(self):
        citemap = defaultdict(set)
        query = """
            MATCH (p:Paper)
            RETURN p.hash_id AS hash_id, p.cite_id_list AS cite_id_list
        """
        with self.driver.session() as session:
            results = session.execute_read(lambda tx: tx.run(query).data())
        for result in results:
            hash_id = result["hash_id"]
            cite_id_list = result["cite_id_list"]
            if cite_id_list:
                for cited_id in cite_id_list:
                    citemap[hash_id].add(cited_id)
        return citemap

    def neo4j_backup(self):
        URI = os.environ["NEO4J_URL"]
        NEO4J_USERNAME = os.environ["NEO4J_USERNAME"]
        NEO4J_PASSWD = os.environ["NEO4J_PASSWD"]
        AUTH = (NEO4J_USERNAME, NEO4J_PASSWD)
        graph = Graph(URI, auth=AUTH)
        # 创建一个字典来保存数据
        # 定义批次大小
        data = {"nodes": [], "relationships": []}
        # 计算数据的总数(例如查询节点总数)
        total_papers_query = "MATCH (e:Entity)-[:RELATED_TO]->(p:Paper) RETURN COUNT(DISTINCT p) AS count"
        total_papers = graph.run(total_papers_query).evaluate()
        print(f"total paper: {total_papers}")
        query = f"""
            MATCH (e:Entity)-[r:RELATED_TO]->(p:Paper)
            RETURN p, e, r
        """
        """
        results = graph.run(query)
        # 处理查询结果
        for record in tqdm(results):
            paper_node = record["p"]
            entity_node = record["e"]
            relationship = record["r"]
            # 将节点数据加入字典
            data["nodes"].append(
                {
                    "id": paper_node.identity,
                    "label": "Paper",
                    "properties": dict(paper_node),
                }
            )
            data["nodes"].append(
                {
                    "id": entity_node.identity,
                    "label": "Entity",
                    "properties": dict(entity_node),
                }
            )
            # 将关系数据加入字典
            data["relationships"].append(
                {
                    "start_node": entity_node.identity,
                    "end_node": paper_node.identity,
                    "type": "RELATED_TO",
                    "properties": dict(relationship),
                }
            )
        """
        query = """
            MATCH (p:Paper)
            WHERE p.venue_name='acl' and p.year='2024'
            RETURN p
        """
        results = graph.run(query)
        for record in tqdm(results):
            paper_node = record["p"]
            # 将节点数据加入字典
            data["nodes"].append(
                {
                    "id": paper_node.identity,
                    "label": "Paper",
                    "properties": dict(paper_node),
                }
            )
        # 去除重复节点
        # data["nodes"] = [dict(t) for t in {tuple(d.items()) for d in data["nodes"]}]
        unique_nodes = []
        seen = set()
        for node in tqdm(data["nodes"]):
            # 将字典项转换为不可变的元组,以便用于集合去重
            node_tuple = str(tuple(sorted(node.items())))
            if node_tuple not in seen:
                seen.add(node_tuple)
                unique_nodes.append(node)
        data["nodes"] = unique_nodes
        # 将数据保存为 JSON 文件
        with open(
            "./assets/data/scipip_neo4j_clean_backup.json", "w", encoding="utf-8"
        ) as f:
            json.dump(data, f, ensure_ascii=False, indent=4)

    def neo4j_import_data(self):
        # clear_database() # 清空数据库,谨慎执行
        URI = os.environ["NEO4J_URL"]
        NEO4J_USERNAME = os.environ["NEO4J_USERNAME"]
        NEO4J_PASSWD = os.environ["NEO4J_PASSWD"]
        AUTH = (NEO4J_USERNAME, NEO4J_PASSWD)
        graph = Graph(URI, auth=AUTH)
        # 从 JSON 文件中读取数据
        with open(
            "./assets/data/scipip_neo4j_clean_backup.json", "r", encoding="utf-8"
        ) as f:
            data = json.load(f)
        # 创建节点
        nodes = {}
        for node_data in data["nodes"]:
            label = node_data["label"]
            properties = node_data["properties"]
            node = Node(label, **properties)
            graph.create(node)
            nodes[node_data["id"]] = node

        # 创建关系
        for relationship_data in data["relationships"]:
            start_node = nodes[relationship_data["start_node"]]
            end_node = nodes[relationship_data["end_node"]]
            properties = relationship_data["properties"]
            rel_type = relationship_data["type"]
            relationship = Relationship(start_node, rel_type, end_node, **properties)
            graph.create(relationship)

    def get_paper_by_id(self, hash_id):
        paper = {"hash_id": hash_id}
        self.update_paper_from_client(paper)
        return paper


if __name__ == "__main__":
    paper_client = PaperClient()
    # paper_client.neo4j_backup()
    paper_client.neo4j_import_data()