from copy import deepcopy import cv2 import numpy as np import torch import torch.nn as nn import roma from copy import deepcopy import tqdm import matplotlib as mpl import matplotlib.cm as cm import matplotlib.pyplot as plt from matplotlib.backends.backend_agg import FigureCanvasAgg from scipy.spatial.transform import Rotation from eval.relpose.evo_utils import * from PIL import Image import imageio.v2 as iio from matplotlib.figure import Figure # from checkpoints.dust3r.viz import colorize_np, colorize def todevice(batch, device, callback=None, non_blocking=False): """Transfer some variables to another device (i.e. GPU, CPU:torch, CPU:numpy). batch: list, tuple, dict of tensors or other things device: pytorch device or 'numpy' callback: function that would be called on every sub-elements. """ if callback: batch = callback(batch) if isinstance(batch, dict): return {k: todevice(v, device) for k, v in batch.items()} if isinstance(batch, (tuple, list)): return type(batch)(todevice(x, device) for x in batch) x = batch if device == "numpy": if isinstance(x, torch.Tensor): x = x.detach().cpu().numpy() elif x is not None: if isinstance(x, np.ndarray): x = torch.from_numpy(x) if torch.is_tensor(x): x = x.to(device, non_blocking=non_blocking) return x to_device = todevice # alias def to_numpy(x): return todevice(x, "numpy") def c2w_to_tumpose(c2w): """ Convert a camera-to-world matrix to a tuple of translation and rotation input: c2w: 4x4 matrix output: tuple of translation and rotation (x y z qw qx qy qz) """ # convert input to numpy c2w = to_numpy(c2w) xyz = c2w[:3, -1] rot = Rotation.from_matrix(c2w[:3, :3]) qx, qy, qz, qw = rot.as_quat() tum_pose = np.concatenate([xyz, [qw, qx, qy, qz]]) return tum_pose def get_tum_poses(poses): """ poses: list of 4x4 arrays """ tt = np.arange(len(poses)).astype(float) tum_poses = [c2w_to_tumpose(p) for p in poses] tum_poses = np.stack(tum_poses, 0) return [tum_poses, tt] def save_tum_poses(poses, path): traj = get_tum_poses(poses) save_trajectory_tum_format(traj, path) return traj[0] # return the poses def save_focals(cam_dict, path): # convert focal to txt focals = cam_dict["focal"] np.savetxt(path, focals, fmt="%.6f") return focals def save_intrinsics(cam_dict, path): K_raw = np.eye(3)[None].repeat(len(cam_dict["focal"]), axis=0) K_raw[:, 0, 0] = cam_dict["focal"] K_raw[:, 1, 1] = cam_dict["focal"] K_raw[:, :2, 2] = cam_dict["pp"] K = K_raw.reshape(-1, 9) np.savetxt(path, K, fmt="%.6f") return K_raw def save_conf_maps(conf, path): for i, c in enumerate(conf): np.save(f"{path}/conf_{i}.npy", c.detach().cpu().numpy()) return conf def save_rgb_imgs(colors, path): imgs = colors for i, img in enumerate(imgs): # convert from rgb to bgr iio.imwrite( f"{path}/frame_{i:04d}.jpg", (img.cpu().numpy() * 255).astype(np.uint8) ) return imgs def save_depth_maps(pts3ds_self, path, conf_self=None): depth_maps = torch.stack([pts3d_self[..., -1] for pts3d_self in pts3ds_self], 0) min_depth = depth_maps.min() # float(torch.quantile(out, 0.01)) max_depth = depth_maps.max() # float(torch.quantile(out, 0.99)) colored_depth = colorize( depth_maps, cmap_name="Spectral_r", range=(min_depth, max_depth), append_cbar=True, ) images = [] if conf_self is not None: conf_selfs = torch.concat(conf_self, 0) min_conf = torch.log(conf_selfs.min()) # float(torch.quantile(out, 0.01)) max_conf = torch.log(conf_selfs.max()) # float(torch.quantile(out, 0.99)) colored_conf = colorize( torch.log(conf_selfs), cmap_name="jet", range=(min_conf, max_conf), append_cbar=True, ) for i, depth_map in enumerate(colored_depth): # Apply color map to depth map img_path = f"{path}/frame_{(i):04d}.png" if conf_self is None: to_save = (depth_map * 255).detach().cpu().numpy().astype(np.uint8) else: to_save = torch.cat([depth_map, colored_conf[i]], dim=1) to_save = (to_save * 255).detach().cpu().numpy().astype(np.uint8) iio.imwrite(img_path, to_save) images.append(Image.open(img_path)) np.save(f"{path}/frame_{(i):04d}.npy", depth_maps[i].detach().cpu().numpy()) images[0].save( f"{path}/_depth_maps.gif", save_all=True, append_images=images[1:], duration=100, loop=0, ) return depth_maps def get_vertical_colorbar(h, vmin, vmax, cmap_name="jet", label=None, cbar_precision=2): """ :param w: pixels :param h: pixels :param vmin: min value :param vmax: max value :param cmap_name: :param label :return: """ fig = Figure(figsize=(2, 8), dpi=100) fig.subplots_adjust(right=1.5) canvas = FigureCanvasAgg(fig) # Do some plotting. ax = fig.add_subplot(111) cmap = cm.get_cmap(cmap_name) norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax) tick_cnt = 6 tick_loc = np.linspace(vmin, vmax, tick_cnt) cb1 = mpl.colorbar.ColorbarBase( ax, cmap=cmap, norm=norm, ticks=tick_loc, orientation="vertical" ) tick_label = [str(np.round(x, cbar_precision)) for x in tick_loc] if cbar_precision == 0: tick_label = [x[:-2] for x in tick_label] cb1.set_ticklabels(tick_label) cb1.ax.tick_params(labelsize=18, rotation=0) if label is not None: cb1.set_label(label) # fig.tight_layout() canvas.draw() s, (width, height) = canvas.print_to_buffer() im = np.frombuffer(s, np.uint8).reshape((height, width, 4)) im = im[:, :, :3].astype(np.float32) / 255.0 if h != im.shape[0]: w = int(im.shape[1] / im.shape[0] * h) im = cv2.resize(im, (w, h), interpolation=cv2.INTER_AREA) return im def colorize_np( x, cmap_name="jet", mask=None, range=None, append_cbar=False, cbar_in_image=False, cbar_precision=2, ): """ turn a grayscale image into a color image :param x: input grayscale, [H, W] :param cmap_name: the colorization method :param mask: the mask image, [H, W] :param range: the range for scaling, automatic if None, [min, max] :param append_cbar: if append the color bar :param cbar_in_image: put the color bar inside the image to keep the output image the same size as the input image :return: colorized image, [H, W] """ if range is not None: vmin, vmax = range elif mask is not None: # vmin, vmax = np.percentile(x[mask], (2, 100)) vmin = np.min(x[mask][np.nonzero(x[mask])]) vmax = np.max(x[mask]) # vmin = vmin - np.abs(vmin) * 0.01 x[np.logical_not(mask)] = vmin # print(vmin, vmax) else: vmin, vmax = np.percentile(x, (1, 100)) vmax += 1e-6 x = np.clip(x, vmin, vmax) x = (x - vmin) / (vmax - vmin) # x = np.clip(x, 0., 1.) cmap = cm.get_cmap(cmap_name) x_new = cmap(x)[:, :, :3] if mask is not None: mask = np.float32(mask[:, :, np.newaxis]) x_new = x_new * mask + np.ones_like(x_new) * (1.0 - mask) cbar = get_vertical_colorbar( h=x.shape[0], vmin=vmin, vmax=vmax, cmap_name=cmap_name, cbar_precision=cbar_precision, ) if append_cbar: if cbar_in_image: x_new[:, -cbar.shape[1] :, :] = cbar else: x_new = np.concatenate( (x_new, np.zeros_like(x_new[:, :5, :]), cbar), axis=1 ) return x_new else: return x_new # tensor def colorize( x, cmap_name="jet", mask=None, range=None, append_cbar=False, cbar_in_image=False ): """ turn a grayscale image into a color image :param x: torch.Tensor, grayscale image, [H, W] or [B, H, W] :param mask: torch.Tensor or None, mask image, [H, W] or [B, H, W] or None """ device = x.device x = x.cpu().numpy() if mask is not None: mask = mask.cpu().numpy() > 0.99 kernel = np.ones((3, 3), np.uint8) if x.ndim == 2: x = x[None] if mask is not None: mask = mask[None] out = [] for x_ in x: if mask is not None: mask = cv2.erode(mask.astype(np.uint8), kernel, iterations=1).astype(bool) x_ = colorize_np(x_, cmap_name, mask, range, append_cbar, cbar_in_image) out.append(torch.from_numpy(x_).to(device).float()) out = torch.stack(out).squeeze(0) return out