import os.path as osp import numpy as np import cv2 import numpy as np import itertools import os import sys sys.path.append(osp.join(osp.dirname(__file__), "..", "..")) from dust3r.datasets.base.base_multiview_dataset import BaseMultiViewDataset from dust3r.utils.image import imread_cv2 class VirtualKITTI2_Multi(BaseMultiViewDataset): def __init__(self, ROOT, *args, **kwargs): self.ROOT = ROOT self.video = True self.is_metric = True self.max_interval = 5 super().__init__(*args, **kwargs) # loading all self._load_data(self.split) def _load_data(self, split=None): scene_dirs = sorted( [ d for d in os.listdir(self.ROOT) if os.path.isdir(os.path.join(self.ROOT, d)) ] ) if split == "train": scene_dirs = scene_dirs[:-1] elif split == "test": scene_dirs = scene_dirs[-1:] seq_dirs = [] for scene in scene_dirs: seq_dirs += sorted( [ os.path.join(scene, d) for d in os.listdir(os.path.join(self.ROOT, scene)) if os.path.isdir(os.path.join(self.ROOT, scene, d)) ] ) offset = 0 scenes = [] sceneids = [] images = [] scene_img_list = [] start_img_ids = [] j = 0 for seq_idx, seq in enumerate(seq_dirs): seq_path = osp.join(self.ROOT, seq) for cam in ["Camera_0", "Camera_1"]: basenames = sorted( [ f[:5] for f in os.listdir(seq_path + "/" + cam) if f.endswith(".jpg") ] ) num_imgs = len(basenames) cut_off = ( self.num_views if not self.allow_repeat else max(self.num_views // 3, 3) ) if num_imgs < cut_off: print(f"Skipping {scene}") continue img_ids = list(np.arange(num_imgs) + offset) start_img_ids_ = img_ids[: num_imgs - cut_off + 1] scenes.append(seq + "/" + cam) scene_img_list.append(img_ids) sceneids.extend([j] * num_imgs) images.extend(basenames) start_img_ids.extend(start_img_ids_) offset += num_imgs j += 1 self.scenes = scenes self.sceneids = sceneids self.images = images self.start_img_ids = start_img_ids self.scene_img_list = scene_img_list def __len__(self): return len(self.start_img_ids) def get_image_num(self): return len(self.images) def get_stats(self): return f"{len(self)} groups of views" def _get_views(self, idx, resolution, rng, num_views): start_id = self.start_img_ids[idx] scene_id = self.sceneids[start_id] all_image_ids = self.scene_img_list[scene_id] pos, ordered_video = self.get_seq_from_start_id( num_views, start_id, all_image_ids, rng, max_interval=self.max_interval, video_prob=1.0, fix_interval_prob=0.9, ) image_idxs = np.array(all_image_ids)[pos] views = [] for v, view_idx in enumerate(image_idxs): scene_id = self.sceneids[view_idx] scene_dir = osp.join(self.ROOT, self.scenes[scene_id]) basename = self.images[view_idx] img = basename + "_rgb.jpg" image = imread_cv2(osp.join(scene_dir, img)) depthmap = ( cv2.imread( osp.join(scene_dir, basename + "_depth.png"), cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH, ).astype(np.float32) / 100.0 ) camera_params = np.load(osp.join(scene_dir, basename + "_cam.npz")) intrinsics = camera_params["camera_intrinsics"] camera_pose = camera_params["camera_pose"] sky_mask = depthmap >= 655 depthmap[sky_mask] = -1.0 # sky image, depthmap, intrinsics = self._crop_resize_if_necessary( image, depthmap, intrinsics, resolution, rng, info=(scene_dir, img) ) # generate img mask and raymap mask img_mask, ray_mask = self.get_img_and_ray_masks( self.is_metric, v, rng, p=[0.85, 0.1, 0.05] ) views.append( dict( img=image, depthmap=depthmap, camera_pose=camera_pose, # cam2world camera_intrinsics=intrinsics, dataset="VirtualKITTI2", label=scene_dir, is_metric=self.is_metric, instance=scene_dir + "_" + img, is_video=ordered_video, quantile=np.array(1.0, dtype=np.float32), img_mask=img_mask, ray_mask=ray_mask, camera_only=False, depth_only=False, single_view=False, reset=False, ) ) assert len(views) == num_views return views