import os.path as osp import numpy as np import cv2 import numpy as np import itertools import os import sys sys.path.append(osp.join(osp.dirname(__file__), "..", "..")) from dust3r.datasets.base.base_multiview_dataset import BaseMultiViewDataset from dust3r.utils.image import imread_cv2 class TartanAir_Multi(BaseMultiViewDataset): def __init__(self, ROOT, *args, **kwargs): self.ROOT = ROOT self.video = True self.is_metric = True self.max_interval = 20 super().__init__(*args, **kwargs) # loading all assert self.split is None self._load_data() def _load_data(self): scene_dirs = sorted( [ d for d in os.listdir(self.ROOT) if os.path.isdir(os.path.join(self.ROOT, d)) ] ) offset = 0 scenes = [] sceneids = [] images = [] scene_img_list = [] start_img_ids = [] j = 0 for scene in scene_dirs: for mode in ["Easy", "Hard"]: seq_dirs = sorted( [ os.path.join(self.ROOT, scene, mode, d) for d in os.listdir(os.path.join(self.ROOT, scene, mode)) if os.path.isdir(os.path.join(self.ROOT, scene, mode, d)) ] ) for seq_dir in seq_dirs: basenames = sorted( [f[:-8] for f in os.listdir(seq_dir) if f.endswith(".png")] ) num_imgs = len(basenames) cut_off = ( self.num_views if not self.allow_repeat else max(self.num_views // 3, 3) ) if num_imgs < cut_off: print(f"Skipping {scene}") continue img_ids = list(np.arange(num_imgs) + offset) start_img_ids_ = img_ids[: num_imgs - cut_off + 1] scenes.append(seq_dir) scene_img_list.append(img_ids) sceneids.extend([j] * num_imgs) images.extend(basenames) start_img_ids.extend(start_img_ids_) offset += num_imgs j += 1 self.scenes = scenes self.sceneids = sceneids self.images = images self.start_img_ids = start_img_ids self.scene_img_list = scene_img_list def __len__(self): return len(self.start_img_ids) def get_image_num(self): return len(self.images) def get_stats(self): return f"{len(self)} groups of views" def _get_views(self, idx, resolution, rng, num_views): start_id = self.start_img_ids[idx] scene_id = self.sceneids[start_id] all_image_ids = self.scene_img_list[scene_id] pos, ordered_video = self.get_seq_from_start_id( num_views, start_id, all_image_ids, rng, max_interval=self.max_interval, video_prob=0.8, fix_interval_prob=0.8, block_shuffle=16, ) image_idxs = np.array(all_image_ids)[pos] views = [] for v, view_idx in enumerate(image_idxs): scene_id = self.sceneids[view_idx] scene_dir = self.scenes[scene_id] basename = self.images[view_idx] img = basename + "_rgb.png" image = imread_cv2(osp.join(scene_dir, img)) depthmap = np.load(osp.join(scene_dir, basename + "_depth.npy")) camera_params = np.load(osp.join(scene_dir, basename + "_cam.npz")) intrinsics = camera_params["camera_intrinsics"] camera_pose = camera_params["camera_pose"] sky_mask = depthmap >= 1000 depthmap[sky_mask] = -1.0 # sky depthmap = np.nan_to_num(depthmap, nan=0, posinf=0, neginf=0) threshold = ( np.percentile(depthmap[depthmap > 0], 98) if depthmap[depthmap > 0].size > 0 else 0 ) depthmap[depthmap > threshold] = 0.0 image, depthmap, intrinsics = self._crop_resize_if_necessary( image, depthmap, intrinsics, resolution, rng, info=(scene_dir, img) ) # generate img mask and raymap mask img_mask, ray_mask = self.get_img_and_ray_masks( self.is_metric, v, rng, p=[0.75, 0.2, 0.05] ) views.append( dict( img=image, depthmap=depthmap, camera_pose=camera_pose, # cam2world camera_intrinsics=intrinsics, dataset="TartanAir", label=scene_dir, is_metric=self.is_metric, instance=scene_dir + "_" + img, is_video=ordered_video, quantile=np.array(1.0, dtype=np.float32), img_mask=img_mask, ray_mask=ray_mask, camera_only=False, depth_only=False, single_view=False, reset=False, ) ) assert len(views) == num_views return views