import os.path as osp import os import sys import itertools sys.path.append(osp.join(osp.dirname(__file__), "..", "..")) import cv2 import numpy as np from dust3r.datasets.base.base_multiview_dataset import BaseMultiViewDataset from dust3r.utils.image import imread_cv2 class HyperSim_Multi(BaseMultiViewDataset): def __init__(self, *args, split, ROOT, **kwargs): self.ROOT = ROOT self.video = True self.is_metric = True self.max_interval = 4 super().__init__(*args, **kwargs) self.loaded_data = self._load_data() def _load_data(self): self.all_scenes = sorted( [f for f in os.listdir(self.ROOT) if os.path.isdir(osp.join(self.ROOT, f))] ) subscenes = [] for scene in self.all_scenes: # not empty subscenes.extend( [ osp.join(scene, f) for f in os.listdir(osp.join(self.ROOT, scene)) if os.path.isdir(osp.join(self.ROOT, scene, f)) and len(os.listdir(osp.join(self.ROOT, scene, f))) > 0 ] ) offset = 0 scenes = [] sceneids = [] images = [] start_img_ids = [] scene_img_list = [] j = 0 for scene_idx, scene in enumerate(subscenes): scene_dir = osp.join(self.ROOT, scene) rgb_paths = sorted([f for f in os.listdir(scene_dir) if f.endswith(".png")]) assert len(rgb_paths) > 0, f"{scene_dir} is empty." num_imgs = len(rgb_paths) cut_off = ( self.num_views if not self.allow_repeat else max(self.num_views // 3, 3) ) if num_imgs < cut_off: print(f"Skipping {scene}") continue img_ids = list(np.arange(num_imgs) + offset) start_img_ids_ = img_ids[: num_imgs - cut_off + 1] scenes.append(scene) scene_img_list.append(img_ids) sceneids.extend([j] * num_imgs) images.extend(rgb_paths) start_img_ids.extend(start_img_ids_) offset += num_imgs j += 1 self.scenes = scenes self.sceneids = sceneids self.images = images self.scene_img_list = scene_img_list self.start_img_ids = start_img_ids def __len__(self): return len(self.start_img_ids) * 10 def get_image_num(self): return len(self.images) def _get_views(self, idx, resolution, rng, num_views): idx = idx // 10 start_id = self.start_img_ids[idx] scene_id = self.sceneids[start_id] all_image_ids = self.scene_img_list[scene_id] pos, ordered_video = self.get_seq_from_start_id( num_views, start_id, all_image_ids, rng, max_interval=self.max_interval, block_shuffle=16, ) image_idxs = np.array(all_image_ids)[pos] views = [] for v, view_idx in enumerate(image_idxs): scene_id = self.sceneids[view_idx] scene_dir = osp.join(self.ROOT, self.scenes[scene_id]) rgb_path = self.images[view_idx] depth_path = rgb_path.replace("rgb.png", "depth.npy") cam_path = rgb_path.replace("rgb.png", "cam.npz") rgb_image = imread_cv2(osp.join(scene_dir, rgb_path), cv2.IMREAD_COLOR) depthmap = np.load(osp.join(scene_dir, depth_path)).astype(np.float32) depthmap[~np.isfinite(depthmap)] = 0 # invalid cam_file = np.load(osp.join(scene_dir, cam_path)) intrinsics = cam_file["intrinsics"].astype(np.float32) camera_pose = cam_file["pose"].astype(np.float32) rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( rgb_image, depthmap, intrinsics, resolution, rng=rng, info=view_idx ) # generate img mask and raymap mask img_mask, ray_mask = self.get_img_and_ray_masks( self.is_metric, v, rng, p=[0.75, 0.2, 0.05] ) views.append( dict( img=rgb_image, depthmap=depthmap.astype(np.float32), camera_pose=camera_pose.astype(np.float32), camera_intrinsics=intrinsics.astype(np.float32), dataset="hypersim", label=self.scenes[scene_id] + "_" + rgb_path, instance=f"{str(idx)}_{str(view_idx)}", is_metric=self.is_metric, is_video=ordered_video, quantile=np.array(1.0, dtype=np.float32), img_mask=img_mask, ray_mask=ray_mask, camera_only=False, depth_only=False, single_view=False, reset=False, ) ) assert len(views) == num_views return views