Spaces:
Runtime error
Runtime error
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# modified from DUSt3R | |
import PIL.Image | |
import numpy as np | |
from scipy.spatial.transform import Rotation | |
import torch | |
import cv2 | |
import matplotlib as mpl | |
import matplotlib.cm as cm | |
import matplotlib.pyplot as plt | |
from dust3r.utils.geometry import ( | |
geotrf, | |
get_med_dist_between_poses, | |
depthmap_to_absolute_camera_coordinates, | |
) | |
from dust3r.utils.device import to_numpy | |
from dust3r.utils.image import rgb, img_to_arr | |
from matplotlib.backends.backend_agg import FigureCanvasAgg | |
from matplotlib.figure import Figure | |
try: | |
import trimesh | |
except ImportError: | |
print("/!\\ module trimesh is not installed, cannot visualize results /!\\") | |
def float2uint8(x): | |
return (255.0 * x).astype(np.uint8) | |
def uint82float(img): | |
return np.ascontiguousarray(img) / 255.0 | |
def cat_3d(vecs): | |
if isinstance(vecs, (np.ndarray, torch.Tensor)): | |
vecs = [vecs] | |
return np.concatenate([p.reshape(-1, 3) for p in to_numpy(vecs)]) | |
def show_raw_pointcloud(pts3d, colors, point_size=2): | |
scene = trimesh.Scene() | |
pct = trimesh.PointCloud(cat_3d(pts3d), colors=cat_3d(colors)) | |
scene.add_geometry(pct) | |
scene.show(line_settings={"point_size": point_size}) | |
def pts3d_to_trimesh(img, pts3d, valid=None): | |
H, W, THREE = img.shape | |
assert THREE == 3 | |
assert img.shape == pts3d.shape | |
vertices = pts3d.reshape(-1, 3) | |
idx = np.arange(len(vertices)).reshape(H, W) | |
idx1 = idx[:-1, :-1].ravel() # top-left corner | |
idx2 = idx[:-1, +1:].ravel() # right-left corner | |
idx3 = idx[+1:, :-1].ravel() # bottom-left corner | |
idx4 = idx[+1:, +1:].ravel() # bottom-right corner | |
faces = np.concatenate( | |
( | |
np.c_[idx1, idx2, idx3], | |
np.c_[ | |
idx3, idx2, idx1 | |
], # same triangle, but backward (cheap solution to cancel face culling) | |
np.c_[idx2, idx3, idx4], | |
np.c_[ | |
idx4, idx3, idx2 | |
], # same triangle, but backward (cheap solution to cancel face culling) | |
), | |
axis=0, | |
) | |
face_colors = np.concatenate( | |
( | |
img[:-1, :-1].reshape(-1, 3), | |
img[:-1, :-1].reshape(-1, 3), | |
img[+1:, +1:].reshape(-1, 3), | |
img[+1:, +1:].reshape(-1, 3), | |
), | |
axis=0, | |
) | |
if valid is not None: | |
assert valid.shape == (H, W) | |
valid_idxs = valid.ravel() | |
valid_faces = valid_idxs[faces].all(axis=-1) | |
faces = faces[valid_faces] | |
face_colors = face_colors[valid_faces] | |
assert len(faces) == len(face_colors) | |
return dict(vertices=vertices, face_colors=face_colors, faces=faces) | |
def cat_meshes(meshes): | |
vertices, faces, colors = zip( | |
*[(m["vertices"], m["faces"], m["face_colors"]) for m in meshes] | |
) | |
n_vertices = np.cumsum([0] + [len(v) for v in vertices]) | |
for i in range(len(faces)): | |
faces[i][:] += n_vertices[i] | |
vertices = np.concatenate(vertices) | |
colors = np.concatenate(colors) | |
faces = np.concatenate(faces) | |
return dict(vertices=vertices, face_colors=colors, faces=faces) | |
def show_duster_pairs(view1, view2, pred1, pred2): | |
import matplotlib.pyplot as pl | |
pl.ion() | |
for e in range(len(view1["instance"])): | |
i = view1["idx"][e] | |
j = view2["idx"][e] | |
img1 = rgb(view1["img"][e]) | |
img2 = rgb(view2["img"][e]) | |
conf1 = pred1["conf"][e].squeeze() | |
conf2 = pred2["conf"][e].squeeze() | |
score = conf1.mean() * conf2.mean() | |
print(f">> Showing pair #{e} {i}-{j} {score=:g}") | |
pl.clf() | |
pl.subplot(221).imshow(img1) | |
pl.subplot(223).imshow(img2) | |
pl.subplot(222).imshow(conf1, vmin=1, vmax=30) | |
pl.subplot(224).imshow(conf2, vmin=1, vmax=30) | |
pts1 = pred1["pts3d"][e] | |
pts2 = pred2["pts3d_in_other_view"][e] | |
pl.subplots_adjust(0, 0, 1, 1, 0, 0) | |
if input("show pointcloud? (y/n) ") == "y": | |
show_raw_pointcloud(cat(pts1, pts2), cat(img1, img2), point_size=5) | |
def auto_cam_size(im_poses): | |
return 0.1 * get_med_dist_between_poses(im_poses) | |
class SceneViz: | |
def __init__(self): | |
self.scene = trimesh.Scene() | |
def add_rgbd( | |
self, image, depth, intrinsics=None, cam2world=None, zfar=np.inf, mask=None | |
): | |
image = img_to_arr(image) | |
if intrinsics is None: | |
H, W, THREE = image.shape | |
focal = max(H, W) | |
intrinsics = np.float32([[focal, 0, W / 2], [0, focal, H / 2], [0, 0, 1]]) | |
pts3d = depthmap_to_pts3d(depth, intrinsics, cam2world=cam2world) | |
return self.add_pointcloud( | |
pts3d, image, mask=(depth < zfar) if mask is None else mask | |
) | |
def add_pointcloud(self, pts3d, color=(0, 0, 0), mask=None, denoise=False): | |
pts3d = to_numpy(pts3d) | |
mask = to_numpy(mask) | |
if not isinstance(pts3d, list): | |
pts3d = [pts3d.reshape(-1, 3)] | |
if mask is not None: | |
mask = [mask.ravel()] | |
if not isinstance(color, (tuple, list)): | |
color = [color.reshape(-1, 3)] | |
if mask is None: | |
mask = [slice(None)] * len(pts3d) | |
pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)]) | |
pct = trimesh.PointCloud(pts) | |
if isinstance(color, (list, np.ndarray, torch.Tensor)): | |
color = to_numpy(color) | |
col = np.concatenate([p[m] for p, m in zip(color, mask)]) | |
assert col.shape == pts.shape, bb() | |
pct.visual.vertex_colors = uint8(col.reshape(-1, 3)) | |
else: | |
assert len(color) == 3 | |
pct.visual.vertex_colors = np.broadcast_to(uint8(color), pts.shape) | |
if denoise: | |
centroid = np.median(pct.vertices, axis=0) | |
dist_to_centroid = np.linalg.norm(pct.vertices - centroid, axis=-1) | |
dist_thr = np.quantile(dist_to_centroid, 0.99) | |
valid = dist_to_centroid < dist_thr | |
pct = trimesh.PointCloud( | |
pct.vertices[valid], color=pct.visual.vertex_colors[valid] | |
) | |
self.scene.add_geometry(pct) | |
return self | |
def add_rgbd( | |
self, image, depth, intrinsics=None, cam2world=None, zfar=np.inf, mask=None | |
): | |
if intrinsics is None: | |
H, W, THREE = image.shape | |
focal = max(H, W) | |
intrinsics = np.float32([[focal, 0, W / 2], [0, focal, H / 2], [0, 0, 1]]) | |
pts3d, mask2 = depthmap_to_absolute_camera_coordinates( | |
depth, intrinsics, cam2world | |
) | |
mask2 &= depth < zfar | |
if mask is not None: | |
mask2 &= mask | |
return self.add_pointcloud(pts3d, image, mask=mask2) | |
def add_camera( | |
self, | |
pose_c2w, | |
focal=None, | |
color=(0, 0, 0), | |
image=None, | |
imsize=None, | |
cam_size=0.03, | |
): | |
pose_c2w, focal, color, image = to_numpy((pose_c2w, focal, color, image)) | |
image = img_to_arr(image) | |
if isinstance(focal, np.ndarray) and focal.shape == (3, 3): | |
intrinsics = focal | |
focal = (intrinsics[0, 0] * intrinsics[1, 1]) ** 0.5 | |
if imsize is None: | |
imsize = (2 * intrinsics[0, 2], 2 * intrinsics[1, 2]) | |
add_scene_cam( | |
self.scene, | |
pose_c2w, | |
color, | |
image, | |
focal, | |
imsize=imsize, | |
screen_width=cam_size, | |
marker=None, | |
) | |
return self | |
def add_cameras( | |
self, poses, focals=None, images=None, imsizes=None, colors=None, **kw | |
): | |
get = lambda arr, idx: None if arr is None else arr[idx] | |
for i, pose_c2w in enumerate(poses): | |
self.add_camera( | |
pose_c2w, | |
get(focals, i), | |
image=get(images, i), | |
color=get(colors, i), | |
imsize=get(imsizes, i), | |
**kw, | |
) | |
return self | |
def show(self, point_size=2): | |
self.scene.show(line_settings={"point_size": point_size}) | |
def show_raw_pointcloud_with_cams( | |
imgs, pts3d, mask, focals, cams2world, point_size=2, cam_size=0.05, cam_color=None | |
): | |
"""Visualization of a pointcloud with cameras | |
imgs = (N, H, W, 3) or N-size list of [(H,W,3), ...] | |
pts3d = (N, H, W, 3) or N-size list of [(H,W,3), ...] | |
focals = (N,) or N-size list of [focal, ...] | |
cams2world = (N,4,4) or N-size list of [(4,4), ...] | |
""" | |
assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals) | |
pts3d = to_numpy(pts3d) | |
imgs = to_numpy(imgs) | |
focals = to_numpy(focals) | |
cams2world = to_numpy(cams2world) | |
scene = trimesh.Scene() | |
pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)]) | |
col = np.concatenate([p[m] for p, m in zip(imgs, mask)]) | |
pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3)) | |
scene.add_geometry(pct) | |
for i, pose_c2w in enumerate(cams2world): | |
if isinstance(cam_color, list): | |
camera_edge_color = cam_color[i] | |
else: | |
camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)] | |
add_scene_cam( | |
scene, | |
pose_c2w, | |
camera_edge_color, | |
imgs[i] if i < len(imgs) else None, | |
focals[i], | |
screen_width=cam_size, | |
) | |
scene.show(line_settings={"point_size": point_size}) | |
def add_scene_cam( | |
scene, | |
pose_c2w, | |
edge_color, | |
image=None, | |
focal=None, | |
imsize=None, | |
screen_width=0.03, | |
marker=None, | |
): | |
if image is not None: | |
image = np.asarray(image) | |
H, W, THREE = image.shape | |
assert THREE == 3 | |
if image.dtype != np.uint8: | |
image = np.uint8(255 * image) | |
elif imsize is not None: | |
W, H = imsize | |
elif focal is not None: | |
H = W = focal / 1.1 | |
else: | |
H = W = 1 | |
if isinstance(focal, np.ndarray): | |
focal = focal[0] | |
if not focal: | |
focal = min(H, W) * 1.1 # default value | |
height = max(screen_width / 10, focal * screen_width / H) | |
width = screen_width * 0.5**0.5 | |
rot45 = np.eye(4) | |
rot45[:3, :3] = Rotation.from_euler("z", np.deg2rad(45)).as_matrix() | |
rot45[2, 3] = -height # set the tip of the cone = optical center | |
aspect_ratio = np.eye(4) | |
aspect_ratio[0, 0] = W / H | |
transform = pose_c2w @ OPENGL @ aspect_ratio @ rot45 | |
cam = trimesh.creation.cone(width, height, sections=4) # , transform=transform) | |
if image is not None: | |
vertices = geotrf(transform, cam.vertices[[4, 5, 1, 3]]) | |
faces = np.array([[0, 1, 2], [0, 2, 3], [2, 1, 0], [3, 2, 0]]) | |
img = trimesh.Trimesh(vertices=vertices, faces=faces) | |
uv_coords = np.float32([[0, 0], [1, 0], [1, 1], [0, 1]]) | |
img.visual = trimesh.visual.TextureVisuals( | |
uv_coords, image=PIL.Image.fromarray(image) | |
) | |
scene.add_geometry(img) | |
rot2 = np.eye(4) | |
rot2[:3, :3] = Rotation.from_euler("z", np.deg2rad(2)).as_matrix() | |
vertices = np.r_[cam.vertices, 0.95 * cam.vertices, geotrf(rot2, cam.vertices)] | |
vertices = geotrf(transform, vertices) | |
faces = [] | |
for face in cam.faces: | |
if 0 in face: | |
continue | |
a, b, c = face | |
a2, b2, c2 = face + len(cam.vertices) | |
a3, b3, c3 = face + 2 * len(cam.vertices) | |
faces.append((a, b, b2)) | |
faces.append((a, a2, c)) | |
faces.append((c2, b, c)) | |
faces.append((a, b, b3)) | |
faces.append((a, a3, c)) | |
faces.append((c3, b, c)) | |
faces += [(c, b, a) for a, b, c in faces] | |
cam = trimesh.Trimesh(vertices=vertices, faces=faces) | |
cam.visual.face_colors[:, :3] = edge_color | |
scene.add_geometry(cam) | |
if marker == "o": | |
marker = trimesh.creation.icosphere(3, radius=screen_width / 4) | |
marker.vertices += pose_c2w[:3, 3] | |
marker.visual.face_colors[:, :3] = edge_color | |
scene.add_geometry(marker) | |
def cat(a, b): | |
return np.concatenate((a.reshape(-1, 3), b.reshape(-1, 3))) | |
OPENGL = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) | |
CAM_COLORS = [ | |
(255, 0, 0), | |
(0, 0, 255), | |
(0, 255, 0), | |
(255, 0, 255), | |
(255, 204, 0), | |
(0, 204, 204), | |
(128, 255, 255), | |
(255, 128, 255), | |
(255, 255, 128), | |
(0, 0, 0), | |
(128, 128, 128), | |
] | |
def uint8(colors): | |
if not isinstance(colors, np.ndarray): | |
colors = np.array(colors) | |
if np.issubdtype(colors.dtype, np.floating): | |
colors *= 255 | |
assert 0 <= colors.min() and colors.max() < 256 | |
return np.uint8(colors) | |
def segment_sky(image): | |
import cv2 | |
from scipy import ndimage | |
image = to_numpy(image) | |
if np.issubdtype(image.dtype, np.floating): | |
image = np.uint8(255 * image.clip(min=0, max=1)) | |
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) | |
lower_blue = np.array([0, 0, 100]) | |
upper_blue = np.array([30, 255, 255]) | |
mask = cv2.inRange(hsv, lower_blue, upper_blue).view(bool) | |
mask |= (hsv[:, :, 1] < 10) & (hsv[:, :, 2] > 150) | |
mask |= (hsv[:, :, 1] < 30) & (hsv[:, :, 2] > 180) | |
mask |= (hsv[:, :, 1] < 50) & (hsv[:, :, 2] > 220) | |
kernel = np.ones((5, 5), np.uint8) | |
mask2 = ndimage.binary_opening(mask, structure=kernel) | |
_, labels, stats, _ = cv2.connectedComponentsWithStats( | |
mask2.view(np.uint8), connectivity=8 | |
) | |
cc_sizes = stats[1:, cv2.CC_STAT_AREA] | |
order = cc_sizes.argsort()[::-1] # bigger first | |
i = 0 | |
selection = [] | |
while i < len(order) and cc_sizes[order[i]] > cc_sizes[order[0]] / 2: | |
selection.append(1 + order[i]) | |
i += 1 | |
mask3 = np.in1d(labels, selection).reshape(labels.shape) | |
return torch.from_numpy(mask3) | |
def get_vertical_colorbar(h, vmin, vmax, cmap_name="jet", label=None, cbar_precision=2): | |
""" | |
:param w: pixels | |
:param h: pixels | |
:param vmin: min value | |
:param vmax: max value | |
:param cmap_name: | |
:param label | |
:return: | |
""" | |
fig = Figure(figsize=(2, 8), dpi=100) | |
fig.subplots_adjust(right=1.5) | |
canvas = FigureCanvasAgg(fig) | |
ax = fig.add_subplot(111) | |
cmap = cm.get_cmap(cmap_name) | |
norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax) | |
tick_cnt = 6 | |
tick_loc = np.linspace(vmin, vmax, tick_cnt) | |
cb1 = mpl.colorbar.ColorbarBase( | |
ax, cmap=cmap, norm=norm, ticks=tick_loc, orientation="vertical" | |
) | |
tick_label = [str(np.round(x, cbar_precision)) for x in tick_loc] | |
if cbar_precision == 0: | |
tick_label = [x[:-2] for x in tick_label] | |
cb1.set_ticklabels(tick_label) | |
cb1.ax.tick_params(labelsize=18, rotation=0) | |
if label is not None: | |
cb1.set_label(label) | |
fig.tight_layout() | |
canvas.draw() | |
s, (width, height) = canvas.print_to_buffer() | |
im = np.frombuffer(s, np.uint8).reshape((height, width, 4)) | |
im = im[:, :, :3].astype(np.float32) / 255.0 | |
if h != im.shape[0]: | |
w = int(im.shape[1] / im.shape[0] * h) | |
im = cv2.resize(im, (w, h), interpolation=cv2.INTER_AREA) | |
return im | |
def colorize_np( | |
x, | |
cmap_name="jet", | |
mask=None, | |
range=None, | |
append_cbar=False, | |
cbar_in_image=False, | |
cbar_precision=2, | |
): | |
""" | |
turn a grayscale image into a color image | |
:param x: input grayscale, [H, W] | |
:param cmap_name: the colorization method | |
:param mask: the mask image, [H, W] | |
:param range: the range for scaling, automatic if None, [min, max] | |
:param append_cbar: if append the color bar | |
:param cbar_in_image: put the color bar inside the image to keep the output image the same size as the input image | |
:return: colorized image, [H, W] | |
""" | |
if range is not None: | |
vmin, vmax = range | |
elif mask is not None: | |
vmin = np.min(x[mask][np.nonzero(x[mask])]) | |
vmax = np.max(x[mask]) | |
x[np.logical_not(mask)] = vmin | |
else: | |
vmin, vmax = np.percentile(x, (1, 100)) | |
vmax += 1e-6 | |
x = np.clip(x, vmin, vmax) | |
x = (x - vmin) / (vmax - vmin) | |
cmap = cm.get_cmap(cmap_name) | |
x_new = cmap(x)[:, :, :3] | |
if mask is not None: | |
mask = np.float32(mask[:, :, np.newaxis]) | |
x_new = x_new * mask + np.ones_like(x_new) * (1.0 - mask) | |
cbar = get_vertical_colorbar( | |
h=x.shape[0], | |
vmin=vmin, | |
vmax=vmax, | |
cmap_name=cmap_name, | |
cbar_precision=cbar_precision, | |
) | |
if append_cbar: | |
if cbar_in_image: | |
x_new[:, -cbar.shape[1] :, :] = cbar | |
else: | |
x_new = np.concatenate( | |
(x_new, np.zeros_like(x_new[:, :5, :]), cbar), axis=1 | |
) | |
return x_new | |
else: | |
return x_new | |
def colorize( | |
x, cmap_name="jet", mask=None, range=None, append_cbar=False, cbar_in_image=False | |
): | |
""" | |
turn a grayscale image into a color image | |
:param x: torch.Tensor, grayscale image, [H, W] or [B, H, W] | |
:param mask: torch.Tensor or None, mask image, [H, W] or [B, H, W] or None | |
""" | |
device = x.device | |
x = x.cpu().numpy() | |
if mask is not None: | |
mask = mask.cpu().numpy() > 0.99 | |
kernel = np.ones((3, 3), np.uint8) | |
if x.ndim == 2: | |
x = x[None] | |
if mask is not None: | |
mask = mask[None] | |
out = [] | |
for x_ in x: | |
if mask is not None: | |
mask = cv2.erode(mask.astype(np.uint8), kernel, iterations=1).astype(bool) | |
x_ = colorize_np(x_, cmap_name, mask, range, append_cbar, cbar_in_image) | |
out.append(torch.from_numpy(x_).to(device).float()) | |
out = torch.stack(out).squeeze(0) | |
return out | |
def draw_correspondences( | |
imgs1, imgs2, coords1, coords2, interval=10, color_by=0, radius=2 | |
): | |
""" | |
draw correspondences between two images | |
:param img1: tensor [B, H, W, 3] | |
:param img2: tensor [B, H, W, 3] | |
:param coord1: tensor [B, N, 2] | |
:param coord2: tensor [B, N, 2] | |
:param interval: int the interval between two points | |
:param color_by: specify the color based on image 1 or image 2, 0 or 1 | |
:return: [B, 2*H, W, 3] | |
""" | |
batch_size = len(imgs1) | |
out = [] | |
for i in range(batch_size): | |
img1 = imgs1[i].detach().cpu().numpy() | |
img2 = imgs2[i].detach().cpu().numpy() | |
coord1 = ( | |
coords1[i].detach().cpu().numpy()[::interval, ::interval].reshape(-1, 2) | |
) | |
coord2 = ( | |
coords2[i].detach().cpu().numpy()[::interval, ::interval].reshape(-1, 2) | |
) | |
img = drawMatches( | |
img1, img2, coord1, coord2, radius=radius, color_by=color_by, row_cat=True | |
) | |
out.append(img) | |
out = np.stack(out) | |
return out | |
def draw_correspondences_lines( | |
imgs1, imgs2, coords1, coords2, interval=10, color_by=0, radius=2 | |
): | |
""" | |
draw correspondences between two images | |
:param img1: tensor [B, H, W, 3] | |
:param img2: tensor [B, H, W, 3] | |
:param coord1: tensor [B, N, 2] | |
:param coord2: tensor [B, N, 2] | |
:param interval: int the interval between two points | |
:param color_by: specify the color based on image 1 or image 2, 0 or 1 | |
:return: [B, 2*H, W, 3] | |
""" | |
batch_size = len(imgs1) | |
out = [] | |
for i in range(batch_size): | |
img1 = imgs1[i].detach().cpu().numpy() | |
img2 = imgs2[i].detach().cpu().numpy() | |
coord1 = ( | |
coords1[i].detach().cpu().numpy()[::interval, ::interval].reshape(-1, 2) | |
) | |
coord2 = ( | |
coords2[i].detach().cpu().numpy()[::interval, ::interval].reshape(-1, 2) | |
) | |
img = drawMatches_lines( | |
img1, img2, coord1, coord2, radius=radius, color_by=color_by, row_cat=True | |
) | |
out.append(img) | |
out = np.stack(out) | |
return out | |
def drawMatches(img1, img2, kp1, kp2, radius=2, mask=None, color_by=0, row_cat=False): | |
h1, w1 = img1.shape[:2] | |
h2, w2 = img2.shape[:2] | |
img1 = np.ascontiguousarray(float2uint8(img1)) | |
img2 = np.ascontiguousarray(float2uint8(img2)) | |
center1 = np.median(kp1, axis=0) | |
center2 = np.median(kp2, axis=0) | |
set_max = range(128) | |
colors = {m: i for i, m in enumerate(set_max)} | |
colors = { | |
m: (255 * np.array(plt.cm.hsv(i / float(len(colors))))[:3][::-1]).astype( | |
np.int32 | |
) | |
for m, i in colors.items() | |
} | |
if mask is not None: | |
ind = np.argsort(mask)[::-1] | |
kp1 = kp1[ind] | |
kp2 = kp2[ind] | |
mask = mask[ind] | |
for i, (pt1, pt2) in enumerate(zip(kp1, kp2)): | |
if color_by == 0: | |
coord_angle = np.arctan2(pt1[1] - center1[1], pt1[0] - center1[0]) | |
elif color_by == 1: | |
coord_angle = np.arctan2(pt2[1] - center2[1], pt2[0] - center2[0]) | |
corr_color = np.int32(64 * coord_angle / np.pi) % 128 | |
color = tuple(colors[corr_color].tolist()) | |
if ( | |
(pt1[0] <= w1 - 1) | |
and (pt1[0] >= 0) | |
and (pt1[1] <= h1 - 1) | |
and (pt1[1] >= 0) | |
): | |
img1 = cv2.circle( | |
img1, (int(pt1[0]), int(pt1[1])), radius, color, -1, cv2.LINE_AA | |
) | |
if ( | |
(pt2[0] <= w2 - 1) | |
and (pt2[0] >= 0) | |
and (pt2[1] <= h2 - 1) | |
and (pt2[1] >= 0) | |
): | |
if mask is not None and mask[i]: | |
img2 = cv2.drawMarker( | |
img2, | |
(int(pt2[0]), int(pt2[1])), | |
color, | |
markerType=cv2.MARKER_CROSS, | |
markerSize=int(5 * radius), | |
thickness=int(radius / 2), | |
line_type=cv2.LINE_AA, | |
) | |
else: | |
img2 = cv2.circle( | |
img2, (int(pt2[0]), int(pt2[1])), radius, color, -1, cv2.LINE_AA | |
) | |
if row_cat: | |
whole_img = np.concatenate([img1, img2], axis=0) | |
else: | |
whole_img = np.concatenate([img1, img2], axis=1) | |
return whole_img | |
if row_cat: | |
return np.concatenate([img1, img2], axis=0) | |
return np.concatenate([img1, img2], axis=1) | |
def drawMatches_lines( | |
img1, img2, kp1, kp2, radius=2, mask=None, color_by=0, row_cat=False | |
): | |
h1, w1 = img1.shape[:2] | |
h2, w2 = img2.shape[:2] | |
img1 = np.ascontiguousarray(float2uint8(img1)) | |
img2 = np.ascontiguousarray(float2uint8(img2)) | |
center1 = np.median(kp1, axis=0) | |
center2 = np.median(kp2, axis=0) | |
set_max = range(128) | |
colors = {m: i for i, m in enumerate(set_max)} | |
colors = { | |
m: (255 * np.array(plt.cm.hsv(i / float(len(colors))))[:3][::-1]).astype( | |
np.int32 | |
) | |
for m, i in colors.items() | |
} | |
if mask is not None: | |
ind = np.argsort(mask)[::-1] | |
kp1 = kp1[ind] | |
kp2 = kp2[ind] | |
mask = mask[ind] | |
if row_cat: | |
whole_img = np.concatenate([img1, img2], axis=0) | |
else: | |
whole_img = np.concatenate([img1, img2], axis=1) | |
for i, (pt1, pt2) in enumerate(zip(kp1, kp2)): | |
if color_by == 0: | |
coord_angle = np.arctan2(pt1[1] - center1[1], pt1[0] - center1[0]) | |
elif color_by == 1: | |
coord_angle = np.arctan2(pt2[1] - center2[1], pt2[0] - center2[0]) | |
corr_color = np.int32(64 * coord_angle / np.pi) % 128 | |
color = tuple(colors[corr_color].tolist()) | |
rand_val = np.random.rand() | |
if rand_val < 0.1: | |
if ( | |
(pt1[0] <= w1 - 1) | |
and (pt1[0] >= 0) | |
and (pt1[1] <= h1 - 1) | |
and (pt1[1] >= 0) | |
) and ( | |
(pt2[0] <= w2 - 1) | |
and (pt2[0] >= 0) | |
and (pt2[1] <= h2 - 1) | |
and (pt2[1] >= 0) | |
): | |
whole_img = cv2.circle( | |
whole_img, | |
(int(pt1[0]), int(pt1[1])), | |
radius, | |
color, | |
-1, | |
cv2.LINE_AA, | |
) | |
if row_cat: | |
whole_img = cv2.circle( | |
whole_img, | |
(int(pt2[0]), int(pt2[1] + h1)), | |
radius, | |
color, | |
-1, | |
cv2.LINE_AA, | |
) | |
cv2.line( | |
whole_img, | |
(int(pt1[0]), int(pt1[1])), | |
(int(pt2[0]), int(pt2[1] + h1)), | |
color, | |
1, | |
cv2.LINE_AA, | |
) | |
else: | |
whole_img = cv2.circle( | |
whole_img, | |
(int(pt2[0] + w1), int(pt2[1])), | |
radius, | |
color, | |
-1, | |
cv2.LINE_AA, | |
) | |
cv2.line( | |
whole_img, | |
(int(pt1[0]), int(pt1[1])), | |
(int(pt2[0] + w1), int(pt2[1])), | |
color, | |
1, | |
cv2.LINE_AA, | |
) | |
return whole_img | |
if row_cat: | |
return np.concatenate([img1, img2], axis=0) | |
return np.concatenate([img1, img2], axis=1) | |
import torch | |
import os | |
import time | |
import viser | |
def rotation_matrix_to_quaternion(R): | |
""" | |
:param R: [3, 3] | |
:return: [4] | |
""" | |
tr = np.trace(R) | |
Rxx = R[0, 0] | |
Ryy = R[1, 1] | |
Rzz = R[2, 2] | |
q = np.zeros(4) | |
q[0] = 0.5 * np.sqrt(1 + tr) | |
q[1] = (R[2, 1] - R[1, 2]) / (4 * q[0]) | |
q[2] = (R[0, 2] - R[2, 0]) / (4 * q[0]) | |
q[3] = (R[1, 0] - R[0, 1]) / (4 * q[0]) | |
return q | |
class PointCloudViewer: | |
def __init__(self, pc_dir, device="cpu"): | |
self.server = viser.ViserServer() | |
self.server.set_up_direction("-y") | |
self.device = device | |
self.tt = lambda x: torch.from_numpy(x).float().to(device) | |
self.pc_dir = pc_dir | |
self.pcs, self.all_steps = self.read_data() | |
self.num_frames = len(self.all_steps) | |
self.fix_camera = False | |
self.camera_scale = self.server.add_gui_slider( | |
"camera_scale", | |
min=0.01, | |
max=1.0, | |
step=0.01, | |
initial_value=0.1, | |
) | |
self.camera_handles = [] | |
def read_data(self): | |
pc_list = os.listdir(self.pc_dir) | |
pc_list.sort(key=lambda x: int(x.split(".")[0].split("_")[-1])) | |
pcs = {} | |
step_list = [] | |
for pc_name in pc_list: | |
pc = np.load(os.path.join(self.pc_dir, pc_name)) | |
step = int(pc_name.split(".")[0].split("_")[-1]) | |
pcs.update({step: {"pc": pc}}) | |
step_list.append(step) | |
return pcs, step_list | |
def parse_pc_data(self, pc, batch_idx=-1): | |
idx = batch_idx | |
ret_dict = {} | |
for i in range(len(pc.keys()) // 2): | |
pred_pts = pc[f"pts3d_{i+1}"][idx].reshape(-1, 3) # [N, 3] | |
color = pc[f"colors_{i+1}"][idx].reshape(-1, 3) # [N, 3] | |
ret_dict.update({f"pred_pts_{i+1}": pred_pts, f"color_{i+1}": color}) | |
return ret_dict | |
def add_pc(self, step): | |
pc = self.pcs[step]["pc"] | |
pc_dict = self.parse_pc_data(pc) | |
for i in range(len(pc_dict.keys()) // 2): | |
self.server.add_point_cloud( | |
name=f"/frames/{step}/pred_pts_{i+1}_{step}", | |
points=pc_dict[f"pred_pts_{i+1}"], | |
colors=pc_dict[f"color_{i+1}"], | |
point_size=0.002, | |
) | |
if not self.fix_camera: | |
raise NotImplementedError | |
R21, T21 = find_rigid_alignment_batched( | |
torch.from_numpy(pc_dict["pred_pts1_2"][None]), | |
torch.from_numpy(pc_dict["pred_pts1_1"][None]), | |
) | |
R12, T12 = find_rigid_alignment_batched( | |
torch.from_numpy(pc_dict["pred_pts2_1"][None]), | |
torch.from_numpy(pc_dict["pred_pts2_2"][None]), | |
) | |
R21 = R21[0].numpy() | |
T21 = T21.numpy() | |
R12 = R12[0].numpy() | |
T12 = T12.numpy() | |
pred_pts1_2 = pc_dict["pred_pts1_2"] @ R21.T + T21 | |
pred_pts2_1 = pc_dict["pred_pts2_1"] @ R12.T + T12 | |
self.server.add_point_cloud( | |
name=f"/frames/{step}/pred_pts1_2_{step}", | |
points=pred_pts1_2, | |
colors=pc_dict["color1_2"], | |
point_size=0.002, | |
) | |
self.server.add_point_cloud( | |
name=f"/frames/{step}/pred_pts2_1_{step}", | |
points=pred_pts2_1, | |
colors=pc_dict["color2_1"], | |
point_size=0.002, | |
) | |
img1 = pc_dict["color1_1"].reshape(224, 224, 3) | |
img2 = pc_dict["color2_2"].reshape(224, 224, 3) | |
self.camera_handles.append( | |
self.server.add_camera_frustum( | |
name=f"/frames/{step}/camera1_{step}", | |
fov=2.0 * np.arctan(224.0 / 490.0), | |
aspect=1.0, | |
scale=self.camera_scale.value, | |
color=(1.0, 0, 0), | |
image=img1, | |
) | |
) | |
self.camera_handles.append( | |
self.server.add_camera_frustum( | |
name=f"/frames/{step}/camera2_{step}", | |
fov=2.0 * np.arctan(224.0 / 490.0), | |
aspect=1.0, | |
scale=self.camera_scale.value, | |
color=(0, 0, 1.0), | |
wxyz=rotation_matrix_to_quaternion(R21), | |
position=T21, | |
image=img2, | |
) | |
) | |
def animate(self): | |
with self.server.add_gui_folder("Playback"): | |
gui_timestep = self.server.add_gui_slider( | |
"Train Step", | |
min=0, | |
max=self.num_frames - 1, | |
step=1, | |
initial_value=0, | |
disabled=True, | |
) | |
gui_next_frame = self.server.add_gui_button("Next Step", disabled=True) | |
gui_prev_frame = self.server.add_gui_button("Prev Step", disabled=True) | |
gui_playing = self.server.add_gui_checkbox("Playing", False) | |
gui_framerate = self.server.add_gui_slider( | |
"FPS", min=1, max=60, step=0.1, initial_value=1 | |
) | |
gui_framerate_options = self.server.add_gui_button_group( | |
"FPS options", ("10", "20", "30", "60") | |
) | |
def _(_) -> None: | |
gui_timestep.value = (gui_timestep.value + 1) % self.num_frames | |
def _(_) -> None: | |
gui_timestep.value = (gui_timestep.value - 1) % self.num_frames | |
def _(_) -> None: | |
gui_timestep.disabled = gui_playing.value | |
gui_next_frame.disabled = gui_playing.value | |
gui_prev_frame.disabled = gui_playing.value | |
def _(_) -> None: | |
gui_framerate.value = int(gui_framerate_options.value) | |
prev_timestep = gui_timestep.value | |
def _(_) -> None: | |
nonlocal prev_timestep | |
current_timestep = gui_timestep.value | |
with self.server.atomic(): | |
frame_nodes[current_timestep].visible = True | |
frame_nodes[prev_timestep].visible = False | |
prev_timestep = current_timestep | |
self.server.flush() # Optional! | |
self.server.add_frame( | |
"/frames", | |
show_axes=False, | |
) | |
frame_nodes = [] | |
for i in range(self.num_frames): | |
step = self.all_steps[i] | |
frame_nodes.append( | |
self.server.add_frame( | |
f"/frames/{step}", | |
show_axes=False, | |
) | |
) | |
self.add_pc(step) | |
for i, frame_node in enumerate(frame_nodes): | |
frame_node.visible = i == gui_timestep.value | |
prev_timestep = gui_timestep.value | |
while True: | |
if gui_playing.value: | |
gui_timestep.value = (gui_timestep.value + 1) % self.num_frames | |
for handle in self.camera_handles: | |
handle.scale = self.camera_scale.value | |
time.sleep(1.0 / gui_framerate.value) | |
def run(self): | |
self.animate() | |
while True: | |
time.sleep(10.0) | |
from sklearn.decomposition import PCA | |
def colorize_feature_map(x): | |
""" | |
Args: | |
x: torch.Tensor, [B, H, W, D] | |
Returns: | |
torch.Tensor, [B, H, W, 3] | |
""" | |
device = x.device | |
x = x.cpu().numpy() | |
out = [] | |
for x_ in x: | |
x_ = colorize_feature_map_np(x_) | |
out.append(torch.from_numpy(x_).to(device)) | |
out = torch.stack(out).squeeze(0) | |
return out | |
def colorize_feature_map_np(x): | |
""" | |
Args: | |
x: np.ndarray, [H, W, D] | |
""" | |
pca = PCA(n_components=3) | |
pca_features = pca.fit_transform(x.reshape(-1, x.shape[-1])) | |
pca_features = (pca_features - pca_features.min()) / ( | |
pca_features.max() - pca_features.min() | |
) | |
pca_features = pca_features.reshape(x.shape[0], x.shape[1], 3) | |
return pca_features | |