Spaces:
Runtime error
Runtime error
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# modified from DUSt3R | |
import numpy as np | |
import torch | |
from dust3r.utils.geometry import xy_grid | |
def estimate_focal_knowing_depth( | |
pts3d, pp, focal_mode="median", min_focal=0.0, max_focal=np.inf | |
): | |
"""Reprojection method, for when the absolute depth is known: | |
1) estimate the camera focal using a robust estimator | |
2) reproject points onto true rays, minimizing a certain error | |
""" | |
B, H, W, THREE = pts3d.shape | |
assert THREE == 3 | |
pixels = xy_grid(W, H, device=pts3d.device).view(1, -1, 2) - pp.view( | |
-1, 1, 2 | |
) # B,HW,2 | |
pts3d = pts3d.flatten(1, 2) # (B, HW, 3) | |
if focal_mode == "median": | |
with torch.no_grad(): | |
u, v = pixels.unbind(dim=-1) | |
x, y, z = pts3d.unbind(dim=-1) | |
fx_votes = (u * z) / x | |
fy_votes = (v * z) / y | |
f_votes = torch.cat((fx_votes.view(B, -1), fy_votes.view(B, -1)), dim=-1) | |
focal = torch.nanmedian(f_votes, dim=-1).values | |
elif focal_mode == "weiszfeld": | |
xy_over_z = (pts3d[..., :2] / pts3d[..., 2:3]).nan_to_num( | |
posinf=0, neginf=0 | |
) # homogeneous (x,y,1) | |
dot_xy_px = (xy_over_z * pixels).sum(dim=-1) | |
dot_xy_xy = xy_over_z.square().sum(dim=-1) | |
focal = dot_xy_px.mean(dim=1) / dot_xy_xy.mean(dim=1) | |
for iter in range(10): | |
dis = (pixels - focal.view(-1, 1, 1) * xy_over_z).norm(dim=-1) | |
w = dis.clip(min=1e-8).reciprocal() | |
focal = (w * dot_xy_px).mean(dim=1) / (w * dot_xy_xy).mean(dim=1) | |
else: | |
raise ValueError(f"bad {focal_mode=}") | |
focal_base = max(H, W) / ( | |
2 * np.tan(np.deg2rad(60) / 2) | |
) # size / 1.1547005383792515 | |
focal = focal.clip(min=min_focal * focal_base, max=max_focal * focal_base) | |
return focal | |